SynEx SHS-025
WP2 Ddliverable D2.1 24, July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0-page 1

THE EXTRANET

Seamless Integration of

Distributed Electronic Patient Records
WP2 Ddliverable D2.1

Abstract

This document comprises one of the two main deliverables from SynEx Work Package 2 - Norway SynEx
Validation. The objective of WP2 is to design and implementation a platform for software components
that can be used to make clinical information available to health professonals using the paradigm of
shared, distributed electronic patient records, based on the principles established by CEN/ENV 12265
and Synapses, and using the object-oriented paradigm and industry standard technology. As a proof of
concept, WP2 includes a demonstration of how the platform and its support for shared, federated
healthcare records can be used to support the continuity of cardiovascular care for patients that are
examined a one of the verification hospitals (SIA) and undergoes cardiac surgery at the other hospita
(RH).

This deliverable D2.1 presents the client-side components that enables a seamless integration of
distributed €electronic patient records. The other deliverable "D2.2 A Platform for Electronic Patient
Record Integration" presents a set of server-side components that comprise a platform from which
healthcare record information can be accessed on an extranet with common internet technology.

The work of WP2 is conducted by Semens Health Services (SHS), Sentralsykehuset i Akershus (SA)
and Rikshospitalet (RH).

Siemens Headlth Services, P.O.Box 10, Veitvet,
N-0518 Oslo, Norway
Phone +47 22 63 30 00, Fax +47 22 63 48 80

Author : Egil.Paulin.Andersen@nr.no
(Norwegian Computing Center, http://www.nr.no)
Distribution : All Consortium members
Date : 24™ July 2000 Version : 1.0
Status : Final
Filing code : SHS-025[WP2] Classification : Public

SynEx SHS-025

WP2 Ddliverable D2.1 24, July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0-page 2
Contents
1. Motivation and BaCKgrOUNGueeeiiiiiiiiiiiiiiet e ettt e e s e e e e e e e s sibb e e e e e e e s e annenes 3
2. Scenario for Demonstrating Shared, Federated Healthcare ReCOrds..........cooeeveininnnnnnnnns 4
3. USING the DEMONSIIGLONeeeiieieeeeeeee ettt e e ettt e e e e s s e e e e e e e s sabbe b e et e e e e e e e annbbeeeeeeas 6
4. AN ArChiteCtUral OVEINVIBW. ..o 19
5. SYNEX Client COMPONENTSciiieiiiiiitiiiiieeee ettt e e e e ibb e e e e e e s s st b er e e e e e s s s sanbrnereeaaeeaaas 23
6. Client ODJECt MOEL.........eiiiiieiiee e e e e r e e e e e e 30
7. Customising DOCUMENT PreSENtalioNS........ccoiiiiuiiiiieiiee ettt e e et e e e e e e e e 35
TS o U 1 Y PP PPPPP PP PR TPPPTP 39
9. CoNCIUTING REMAIKS. ...ttt e et e e e e e e bbb e e e e e e e e anbbr e e e e e aeeeaaas 40
10. REFEIBNCES ... 42

Author : Egil.Paulin.Andersen@nr.no

(Norwegian Computing Center, http://www.nr.no)

Distribution : All Consortium members

Date : 24™ July 2000 Version : 1.0

Status : Final

Filing code : SHS-025[WP2] Classification : Public

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0-page 3

1. Motivation and Background

The management of electronic patient data was relatively easy as long as the data was collected, stored and
viewed in a closed environment like a hospital or doctor's practice. Heterogeneous and compatible IT systems
were provided by one company and externally or internally employed, centralised system administrators were
responsible for the smooth use of all installed components. No connection to the "outside world" was
established which eased the protection of patient data immensely. Data exchange was only possible by paper,
mail, fax or telephone, which lead to extra work and unreliability: feedback and results had to be manualy
entered into a new system. Increased computerisation throughout the health sector has given rise to a
proliferation of independent systems storing patient data. However, the growing trend towards shared care
requires that these systems are able to share their data. This has led to the development of projects such as
Synapses [3][4][5] and its follow-up SynEx [1][2] which aims to provide healthcare professionals with
integrated access to patient records and related information, regardless of where this information resides.

The goa of SynEx Work Package 2 is to support the continuity of care through shared federated
healthcare records (FHCR). That is, a migration from FHCRs in the Synapses perspective, where they are
primarily used to integrate legacy systems, to FHCRs in the SynEx perspective where records are shared across
extranet, and where parts of a record can be regarded as part of another record. More specificaly, the tasks of
WP2 was to design, implement and demonstrate

a platform for software components that make clinical information available to health professionals
using the paradigm of distributed electronic patient records, based on the principles established by
CEN/ENV 12265 and Synapses, and using the object-oriented paradigm and industry standard
technology.

a federated health care record (FHCR) supporting the continuity of cardiovascular care for patients
that are examined at one of the verification hospitals (SA) and undergoes cardiac surgery at the other
hospital (RH).

The work in WP2 has resulted in a distributed, component-based information system where users can access
information in a Synapses compliant server on an extranet based on common internet technology.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0-page 4

2. Scenario for Demonstrating Shared, Federated Healthcare Records

The platform and software components developed in WP2 will be used to demonstrate, in a semi rea life
situation, clinical collaboration based on a federated heathcare record (FHCR) shared between two closely
collaborating hospitals providing shared cardiovascular care. The FHCR can be used as an alternative for
sharing information by being composed from two different records in two hospitals.

The Norway clinica sites for the installation and evaluation of SynEx products are;
® The Department of Medicine at the Central hospital of Akershus (SiA—Sentralsykehuset i Akershus)

® The Department of Cardiac Surgery at the National Hospital (RH - Rikshospitalet)

Both hospitals are reference sites for SHS prospects in the Norwegian market, and these two hospitals
collaborate in the treatment of patients with angina pectoris that needs surgical treatment. Patients with Angina
Pectoris in the County of Akershus are examined and considered for bypass operation at SIA. If candidate for
operation, the patient is transferred to RH for the actual operation.

RH ’ '”"//’/i’hdUde\%\léf/“ copy“\\ SA
& < fﬁ S~
4— E% examination E

. > 4
surgery
\ 1= L

L v I
current situation copy T “"Tinclude

RH SIA SynEx

T 5 prototype
F examination information *

: = \.

~--—. .______Surgeryinformation. __._...o---- -)

Figure 1. Demonstration scenario.
Current situation

Today, when a patient is admitted to SIA, a record, or a new section in an existing record, is created.
Examinations are made and results recorded in the record. If surgery is required the relevant record information
is copied, and a discharge letter written. This accompanies the patient to RH. At RH a new record, or a new
section in an existing record, is created. The accompanying information is re-typed, and the required treatment
recorded. When treatment is finalised the patient and the relevant parts of his record, together with a discharge
letter, is transferred back to SIA.

Utilising Shared Federated Healthcar e Records

Figure 1 illustrates a scenario for how shared FHCR's can be used to simplify this procedure. Relevant parts of
the record at SIA will be made available to the appropriate doctors at RH, while other parts are hidden. These
parts will be considered part of the patients record a8 RH, and thus part of the federated record.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0-page 5

Correspondingly, the part of the RH record relevant for the continuity of care will be made available to the
appropriate doctors at SiA, and become part of their record.

Validation

Validation of the demonstrator will be based on combining several real patient cases and real patient data, in an
anonymous way. It will thus behave as if it were a rea life case, but it will not be used on actua cases. The
current legislation in Norway prevents us from transferring real patient data across extranet.

Benefits
The benefits of shared FHCR as demonstrated by the prototype are:

- it facilitates the continuity of care between organisations

- relevant information is available and thus reduces the risk of making wrong decisions due to lack of
information

- it reduces administrative work
- the basis for decision making is more explicit and available
- it facilitates quality monitoring/control, research, etc.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0-page 6

3. Using the Demonstrator
3.1 Introduction

This document presents a set of client-side components that are implemented for the demonstration of shared,
federated healthcare records according to the above scenario. We will refer to this SynEx WP2 demonstrator as
the SHS Demonstrator, and we can distinguish between two different groups of components made.

A set of COM components (within dll's) are made to achieve a seamless integration of information of a
number of distributed electronic patient records. These COM components have no graphical user interface
(GUI). Instead they offer a set of COM interfaces that can be used (programmatically) by other, e.g. GUI,
components to retrieve FHCR information. Thus these components are not made for a specific application.
Rather they can be used by any application that needs to work with SynEx compliant! FHCR's (as a front-end
to the webserver).

In addition a set of ActiveX controls (.ocx's) are made specifically for this SHS Demonstrator. They provide
the GUI of the demonstrator, but since the main topic of this project does not concern user interfaces and
graphical presentations, this GUI is not of production quality. However, the demonstrator supports three
different means for presenting information graphically (XSL, DHTML, ActiveX/Applets, see below), and any
authorised user can improve presentation quality without having to change or recompile any components.

- SynFu Client Main Page - Microsoft Imernet Explorer

Fle Edi “wiew Fewxlies Tools Help -

SIEMENS

- -AE EvrEx Home
- bF SHE Home

i -H2* Dublin Homa
‘-4 London Home

i@ Geneva Home
- 055 Tast
i Ein- Senlralshehuzet | Akershus
i~ 4@ FH - Fikshospitaler
i Dublin Synepaes Serer
| London Synapses Sarar
© i Genews Synapses Sener

Health Services

SynEx Shared Federated Healthcare Records

2] Hew ser/er Genevn Synapses Server noded T = Py Coergiter (Mived)

g
i

Figure 2. Start page of the SHS Demonstrator.

3.2 Use View of the SHS Demonstr ator

li.e, FHCR's offered by Synapses serversin SynExML formatted XML.

SynEx SHS-025
WP2 Déliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0-page 7

The following is abrief description of how a session with the SHS Demonstrator will be perceived by a user.

A user first navigates in Internet Explorer v.5+ to the home page of the application. The user is then
presented with the view in figure 2.The GUI consists of two resizable HTML frames. The left frame contains a
tree-view control, and this is where the user interaction takes place. A right mouse click on the various tree-
view items will present alist of possible actions. The right frame is for information presentation.

Initialy, when starting the application, the tree-view control contains a set of items for sources of
information on SynEx, and a set of items representing available servers to connect to. An information source
like e.g. "SynEx Home" must be activated by a double-click (as opposed to the right click for every other item),
and figure 3 illustrates the result of this.

= | SyinEx Cleind Maim Page - Micioaofl nkamel Explorer

|| Ble Edit Miew Fowoetes Tools Help

Sy 2AranEt

=1 /1 =
i () LA
Infammetion . 5 e = e e
wF EuER Hiife SwnEX enables authorsed persons o Zes the degcripbon, the organizabon
P SHE Hoeng shareand present medica records and the work plan of the SyrEx

from any system in sy place, and projects,
s3gigts thern in - understanding thair
clirical significarce. The originatirg

2 Dubkn Homa

KF Lanckan Homs

B Genalia Hame
i 055 Tox

o Gid- Bermalsyhebusal i karshus
RH - Fikeghoenalat

3 Dublin Synepses Sansar

& London Synepass Sarar

& Gereun Drapees Serer

E| Uger emil & Iogged of sarsar DEE Tast

systems are left intact, so that users
free of cormmianent to partcular Paztoers

suppliers and can chioose best-of-
breed methads for their own spedfic
intarasts,

= Praduced by the SynEx
cargortium, with support from
the Telematics dpploabans

+ Programme of the Europesn

= Commission, Febraary 2000

Ser the list of partners in the SunEx
project with the nfermabon about
contact penpk.

Componants

See the |kt of the companents i the
SynE= projects

F ¥t ho Adaobed® AcrabstE Peader i free, and fresly distributable,
I'* II ﬁl aoftware that leta you view and print Adabe Partable Document

Farrss [FOF) files.

[5 hy Camputer (Hosd)

Figure 3. The SynEx home page.

Information on a particular server, e.g. "OSS Test", will be provided by selecting "Properties’ after aright click
on this tree-view item. By selecting "LogOn" the user will be asked for a user name and a password for this
server, asillustrated in figure 4.

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0-page 8
EEile Edit “iew Fawvorites Tools Help |-

Server Information

Rl E EXTRANC] Server name: O8S Test
Type: OSLO
H SynEx Client Address: http://citroen.nr.no/SynExDemo/oss.asp
=€) Information Web information: hitp://citroen.nr.no/SynExDemo/synexclient-info.html

-2 SynEx Home

Offline catalog: C:\SynExClient\Offline'OSS Test

.8 RH - Rikshospitalst
@ Dublin Synapses Server
... ¥ London Synapses Server

-------- & Geneva Synapses Server

OB Tes

Uisername |emi|

Pazzword |’°'°“W‘°"

OF

Kl | >

!@ User admin is logged off server 0SS Test |_ |_ I_Q Wy Computer

Figure4.Log onto server "OSSTest".

After a successful logon, the user can select "Record Search” in the login menu (right click the Login tree-view
item) to retrieve information on a particular record, folder or document.

Notice that the current means for requesting a particular record, folder or document is not very user
friendly, to say the least, since the user must know the exact identifier of the information requested. Thus an
important part of further work on the SynEx FHCR specification will be to agree on how to standardise record
search, and search for parts of records.

After a successful record request the client will receive information on the folders and documents of this
record, i.e., information on the record structure, and the user will have them presented in the tree-view control
with documents as leaf nodes. Afterwards the user can retrieve more information on individual documents
and/or folders by right clicking the corresponding tree-view items. For example, by right clicking on a particular
document, e.g. "UsrNor_Registration”, and selecting "View Document”, this document will be presented in the
right frame according to either a default, or aternatively a customised, specification of how it should be
presented (e.g. XSL, DHTML; see section 3.5 for more information). Figure 6 illustrates this.

SHS-025
24. July, 2000
Ver 1.0-page 9

SynEx
WP2 Deliverable D2.1
Seamless Integration of Distributed Electronic Patient Records

2 SynEx Client Main Page - Microsof Ime et Explorer

|| Ele Edr wiew Fgvaries Toals Help

|- A Cuible Homre
{~4F Loadon Homa
I Caneva Home
- -8 DES Test
b =z @rnil
@ 5id - Scnimlsykehuzeti Akarshus
@ RH - Fiksha=pialet
@ Dublin Synapzes Server
@ Londan Synepees Seevar
@ Gengwva Synaoses Sarsar

EE:I-FIEmrd mmmyrrh

Record Search

Type:
Faldar
Dacument

H SynEx Client

=1 -} Infommation thnl‘d]]:l:ba
i~ F SyrEx Home
| % SHE Horma RCID: |

Submit

Cancal

3 Wy Campuber

Figure 5. Request information on a particular record, folder or document.

at bewm Proge: - bicoos ol lebarmet Explones

Eile Edi Wiew FevDifles Toole Hep

=] E3

& -[B8 Fecard Fegian_LUsei[FecardFolbsr

| [Bagion_Usericcess|Dasihem)
i [F magior_Userelerence|Doctiern]
@ SiA - Serirelsykehusel | Alershus

UsrNor Registration

Attribuire
Uger FamilyMame Andersen
User Firsiame Emml

Value

HE Lege HS Lege
User_TitleLong Droktor
User_TiileShor D

BEE polikdinild

Log Time
200007 19T13:03:47
20000719T13:03:58

!%“,ﬁ‘;,ﬁ,’:g‘n User MiddleName Panlin 2000071 9T13:04:03
= @cssTex Teer_SecurityCode 301194 41176 20000719T13:04:16
= arm

20000719T13:04:25
2000071ETIS:04:45
200007 ISTIF:04:39

| v

@ FH - Fikshospialet Teer Department 20000719T13:05:03
il User Place Rikshospitalet 20000719T13:05:11
@ Carvan Bynopsas Seruer User PhomeWorle 22 33 44 55 20000719TI3:05:16
User FmailWork EDB Rikshospitalet ZO00071STI3:05:24

Uger HPR Eceol 20000719T13:05:49 =
User Passwaord O 20000719T13:10:11
User_Loginld eni | 20000719T13:03:39
Teer_Cardld 1234 2O000F1STI3:05:50
User StrectAddress Ganstadalleen 23 20000719T12: (04
User ZipCode 0314 20000719TI3:06:11

ser_City o ZO000T1STIZ06:18 s

&) Ve CarFiC in bemwsar [(3 by Campurisr o

Figure 6. Viewing a particular document.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 10

The following section provides a brief description of the various kinds of objects that constitute Synapses
healthcare records.

3.3 Federated Healthcare Records according to Synapses

The FHCR model developed in Synapses has been used as the basis for the core XML DTD in SynEx
(SynEXML (SynEx Markup Language)). This section describes briefly the concepts of the Synapses Record
Architecture in a smplified way, the SynOM (Synapses Object Model) and the SynOD (Synapses Object
Dictionary). In contrast to the very detailed and highly specific record architectures of for example HL7
(Health Level 7), the SynOM is a generic and flexible common object model. It extends the model of the EPR
(Electronic Patient Record) described in ENV12265 from CEN/TC251. More detailed and technical descriptions
can befound in [3] [4] [5].

The Synapses Record Architecture consists of a single class hierarchy, and every Synapses patient record
consists of a set of objects where each object is instantiated from a class in this hierarchy. Each class in the
hierarchy belongs to one out of two main groups of classes. The structure of a record is made out of objects
instantiated from the "structural classes', called Record Item Complexes (RICs), while the data (information)
within arecord consists of objects instantiated from "data value classes', called Record Items.

The structure of a Synapses record corresponds to a tree structure of RIC objects, and each record can
have unidirectional links to other such tree structures, i.e., to other records. The tree structure of each record is
rooted in a single particular RecordFolder object, i.e., instantiated from class RecordFolder, which represents
the overall record. Below this object there will be a structure of folders (FolderRIC abjects) and documents
(ComRIC objects). Each document will itself consist of a tree structure of objects, which can be DataRIC
objects and/or ViewRIC1 objects. The former contains information that is explicitly recorded in the record,
while the latter are used to represent computed or derived information.

In addition there are objects that represent links to other records, called ViewRIC2 objects. These are the
key to the SynEx integration of Synapses records. They contain the unique identification of another RIC object,
and they are used as follows. The root object of a record, or a folder within a record, may contain a single
ViewRIC2 object that references another record or folder object, respectively. In addition, a document may
contain one or more ViewRIC2 objects that each reference some subset of other documents. The RIC object
referenced by a ViewRIC2 object is either loca, intra- or inter-record, or remote, and if remote then the
ViewRIC2 object contains an URL that identifies the server where the target RIC object resides.

Each RIC object instantiated from one of the "structural classes' will have a small set of static, predefined
attributes, e.g. as required for their unique identification, or the target address of a ViewRIC2 abject. However,
most of the information content of a record, and al the medical information, exists in Recorditem objects
instantiated from the "data value classes'. That is, a set of Recordltem objects can be attached to a structural
RIC object and thus function as its dynamic attributes with actua data values like eg. a blood pressure
measurement. The Recorditem objects that belong to a particular RIC object can also themselves be organised
into a tree structure. Due to these RecordItem objects, the information content of a record can by dynamically
extended over time, and with information of a kind that may not have been foreseen at the time the record itself
was created.

The distinction between RIC classes versus Recordlitem classes comprises a kind of "vertical" grouping of
the overall Synapses class hierarchy. In addition the class hierarchy is split "horizontally" into a predefined set
of base classes common to every Synapses server, caled the Synapses Object Model (SynOM), and an
extendable set of classes that are derived from these SynOM classes, called the Synapses Object Dictionary
(SynOD). The above RIC classes RecordFolder, FolderRIC, ComRIC, etc, all belong to the SynOM, and they
define the core part of Synapses' generic record model. The SynOD classes on the other hand, which are site
specific and thus may differ for each Synapses server, are the classes from which the actual patient record
objects are instantiated. Thus while every record object has the above SynOM characteristics and properties,
they can also be customised to the needs of each individua site.

SynEx

SHS-025
WP2 Déliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 11

waEx Cleasd Mo Page

Fla Edt Yiew Fmwdioe Toak Help

Micros0lt kssamer Exgiarar

Bl SynEx Cliant
= i Inbormastion
¥ SyrEw Home
BF SHE Homa
m* Ciubln Home
B London Homea
BF Gonesss Homa
= A 55 Tt
= - il
- B Faccd Fegion_Use [RecodFoder]
D isridor_Fegisradon] Dodem]
[Pegion_LUis=rtcress[Cioctem]
[Fagion_UssaPratenarea Do bam]
B SiA - Senvalndoshusst Akershus
FH - Pikshosgitelet,
Dlublin Eynapsas Earver
London Syrepess Seraer
@ Grreos Synapees Sene

RIC Information

Server Name: (85 Test
User Logim: ¢l
RecordiD: 33
ROy 1
BynapzesType: REC ORDFOLDER
Type:RecordFolder
Clazs Name: Region User
Lasgisage: english
Log Time: 20000719TL3:03:34
Log UserlD: Admin
Invaliclabion Time:
brvalidation UzerdD»:
Presendation: NONE
Target Server Name: -
Target BecordlDy: -
Target RCILY; -

Becordliems belonmng to this RIC:

Class Mame Value

Type RCID| LopTime LogUseriD| InvalidationTime 1
Region_User BecordPepose 1 1 200E0719T15:03:34 Admin FO0KL 08 TRb-00 (W
User
il i |
5] Shows Recordoider inomai o - ' |55 Mty Compatar e

Figure 7. Viewing detailed information on a RecordFolder.

=] Swntn Chias! Mosn Page - Mscrnosoft lnbamel Exploras

|| Bie' Edt wiew Fgoodles Todls Help

[symEx Client
=] Informadion
=1 4 085 Tast
5w ermi
= B Renard Rogian_UsafFRecordFoided
I3 Uerbdar_Flagstraiion[Dockam]
4 -EJ Pagan_Useracrec: Dodiem)
] Fegion_|semboc=ss[Hamek=m]
=] Regicn_LUserosassHomakam]
8] Fegion_UaerdooaeHamakem)
T8 Pegion_sarooass[Hamakam)
— T Region_Usemocass[Homekam]
]] Pegion_|Jsemboo==s[Hamekem]
[Fiagon_UserPratarancalDodhem]
@ SiA- Sanimltmhusel | Akershus
W AH -Fikshoapitelat
Oubrin Syhapess Saner
Landan Synapsas Sener
- A Gengun Bunapias Serve

18] Showe MiawPICE into m aian

- & Fegion_|seraccass[Localy Bwilem

RIC Information

Server Natne: (0855 Test
Uzer Login: emil
RecordlD; 33
RCID:11
Bynapses [ype: VIEWRICZ
Type: Local Viewlicm
Clazs Mame: Begion UserAccess
Langeage: english
Log Time: 20000719T13:03:34
Log UserlD: Admen
Invalidation Time:
Trvalidation UeerIl):
Presentation: -
Target Server Name: (85 Test
Tarpet RecordiD: 33
Target RCID: 3

Fecordltems belonging to this RIC:

Clags Name Valne|T3'|J-e RCID | LegTlime Logliserld | InvalidationTime

Bl

B Wby Cornputar

Figure 8. Viewing detailed information on a ViewRIC2 (in this case a local link within the same document).

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 12

Asiillustrated in figure 7 and figure 8, by right clicking on a "RecordFolder” item in the tree-view control, e.g.
"Region_User", or an item that represents an object within arecord, e.g. alocal ViewRIC2 within the document
"Region_UserAccess', and selecting "Properties’ from the menu, detailed information on this RIC will be
provided; e.g. which Recorditem's, if any, are connected to this RIC, and so on.

3.4 An Example Scenario

Consider a user that connects to a SynEx compliant site such as RH (Rikshospitalet) in Odlo. The user's access
rights are collected and stored from an initial login operation. After the successful login, the user chooses what
he wants to browse from a set of available records and record fragments. Parts of a particular selected record
may reside at other sites such as SIH (St. Jamess Hospital) in Dublin. When presenting the user with
information from this record, the fact that the information content is distributed should be transparent to the
user. If adocument from RH is requested it will be retrieved from the current server, while if a document from
SJH is requested then the client will forward the request to SIJH transparently to the user and retrieve the
requested document from there. The information to forward the request is entered at the first request of data
from SJH and will be stored at RH whereas the data itself resides at SJH. Of course, using this technique might
lead to multiple levels of redirection, but it ensures a consistent storage of data at exactly one place.

Figure 9 illustrates an example healthcare record sharing between SIA and RH, while figure 10 extends this
to also include a Dublin hospital.

[~ 1} i 55wl s | Tmemen 8 Sy E el s o e SyndE s hsn vl

Bl Eft Yew Fgeonae Tool Help

-'l.:ll:llule_lﬂ Ok Sym Esdlm s S rE il Em D e Sy o Emmt ot _:|
SyEs Chanl
wioyrces ofinformakon ; =]
SiA record (16) with a OES Tasd User Begisnation
i Eid - Eenirninyhshuaet | Alesrrhus
docu_ment (RH_Document) -4l Haskan User Regstration 3
thatis areference (RH_ = H'ﬁﬁﬂ-_:ﬂ;m-nmni:cn:w?M| U— e -
RemoteLink) to a RH . B AH_Doo.mam{FmataDodtan] o -s_;id:f.,nfm T p;..| .
document (User_Registration) 3 AH_Fumotulin I e i

f User_FamibyMName = Amdersen
5 [Dubsln_ D ocum eniFarmots
B AH - Fikshoepitmis:
L Aamin
= [330 s _FaesonofFa oo nickr]
[Uimar_FgisrationCiaciem| | ;
& B tsarscoescDinchom] \ Uger_TitleLong = hivTitle
‘ 1 Usan_Profmmreze|Disctiom] = Thi= 15 |||:.‘T|||'r.
- 1008 Foss oot Feeca el _ S Fiscond Fokisi] _
W = B Famoias_EiG]Ramoeiasien] Uzer_TitleShot = Shicat tatle
= [15 Liner_Pecoedink|Fe enmiFrid
B Local_DecuremDaniem] Tyer Registration - £
-3 FAH_Cooume—rd|FamosCac il
s~ @ Dusin_DommenPemoien
o Dbk Synimp secs: Baiter

same
SiA record

User Hegistration - 4

same RH
document

RH record

Ulaer Regivtvation - SH@10

VlrFuaI_RH record (1000) Lonelon Sy magsims Sarer User Departent = Aduinisation s
which is actually arecord Genews Bynapaes B Tacs Blste = Adinbliis
(16) at SiA Ueer PlonwWork = 22 85 34 04
Tleer Reghdvation - SH@11
Taer Email Wk = Eal Poulin Airdersendnr no
¢ | |
User Hegistration - &
?n User Registration - 6009
ARG, A
== = == =
&] Displey document n browser 21 by Computer

Figure 9. Sharing healthcare records at SA and RH.

SynEx
WP2 Ddliverable D2.1

Seamless Integration of Distributed Electronic Patient Records

SHS-025
24. July, 2000
Ver 1.0- page 13

Eile Ecl Wiew Foeontes Took Bl

Ex Clieni
Sounoey of kbameatian
B 05E Tow
& Sl - Sanrelssha e | Aerahis
=4k Egi
1E Ummi_Pecord ink[Aecornd Fodder)
- Loeal DocumenfCinctism)
= 3 AH_DommenRemosDodiem]
[Duddin_Dio curmio] Fcenio o Do o]
W Dl _Fiamohel in kR veieiics
W FH - Rk pisslan
- Admin
= B 1000 FesmnteFepom 5 P noF nider]
=1 Pimoiview SAFE mokviswhiem]
B 15 e _Femcord kPl condFak
[Local DocumaniCochen]
o[FH_Do v {Pa ikl
8 FiH_PusmobeLink[Famot
=3 Cublin_Danimsn{Aamaoisl

RH record (1000) references
a SiA record (16) with a
document (Dublin_Document)
that is areference (Dublin_
RemoteLink) to a Dublin
document (Demographics)

m i

O | g e 3001
MEM: 01 23457
Somvnamie Dlvrplne

Foremame Eoisin
Adilrvess: 34 Limekiln Rl Daklin 12
Sex F

IR 2Z0L7ER

Mledieal Speciality Newralogy

Secombary Location: 10T

Mloritnd Skmines: blaanied

RH record Ailerdiiing Drisgmesis Stoke
Crecupation. Computer Engiveer
Coaenbrome D, Syrilie

Digpte O Acihmission: 417497

Telephone Nmnher 01 123457

= [Cubin_ PamoieLink[Fesr
(gl C=iogieghical|

I Cublin Surnepace: Surar
=R Dl ker
= [B 0123457 Flucond])
5 3 Cimtient]
2 Cmmesgrmphins=]
=B Lbaomerions | e i gration s[]

£ Biocham kil

= B Camiac _—/
[CEfCamiac Enmrmasi]
B Citk Fraction|[]

= 4 Hasmestcinmy]

= 8 Candiac]

A FroFBC-FLT-DFRQ
B London Bynapaas Sanses

SiA record

same
Dublin
document

B i Sy e S
a |

e

] Work Dnlined

&

2 by Comp uter

Figure 10. Sharing healthcarerecordsat SA, RH and Dublin.

PS: The GUI differences between figure 9 and 10 versus the other ones above are due to the latter examples being
madein an earlier version of the client GUI components.

An important characteristic of this integration scenario is it's client-side processing, where the requests were
made. The server's only responsibility is to maintain valid links to where remote parts of its records reside.
Furthermore, the implementation of a particular Synapses server, and its legacy feeder systems, isirrelevant to
the integration. For example, the Dublin Synapses server is based on a C++/CORBA environment connecting to
various data sources via a generic database interface, while the Oslo Synapses server uses MTS (Microsoft
Transaction Server) with COM (Component Object Model) components as the application layer, and SQL
Server for the data store (see deliverable D2.2). Thus far no SynEx attempt has been made to standardise the
web server interfaces. The Dublin web server interface is based on CGI scripts, while the Oslo web server uses
ASP, but this is just a matter of implementation, both are equally suitable and could easily be exchanged or
even replaced by athird one. A great benefit of basing the information exchange on XML is that it makes the
technology offering this information transparent to the task of achieving seamless integration. It would have
been much more cumbersome and time-consuming to achieve record integration based on a common protocol,
e.g. (D)COM or CORBA (Common Object Request Broker Architecture) components.

3.5 Menusand User Functionality

In the SHS Demonstrator all user interaction takes place via pop-up menus attached to items in the tree-view
control in the left HTML frame. The only exception is using a double-click to view a particular information
source (under the "information" item). The following is a description of each of these menus.

3.5.1 Root Menu (" SynEx Client")

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 14

Refresh > Refresh Infor mation

The information sources listed under the "Information” item are read from a particular XML file ("synex-
information.xml") on the default server when starting the application. This menu selection implies a new read
of this file. However, its purpose is mainly for offline use, since in that case a corresponding local file will be
read (" C:\SynExClient\Common\synex-information.html").

Refresh > Refresh Servers

The available servers are read from a particular XML file ("synex-server-info.xml") on the default server when
starting the application, and then presented as tree-view server items. This menu selection implies a new read of
this file. However, its purpose is mainly for offline use, since in that case a corresponding loca file will be read
("C:\SynExClient\Common\synex-server-info.html").

New > New Server

Define a new server. Information required is its name (any unique name is valid), its type and its (web)
address. The "type" of a server concerns how to connect to the server to retrieve SynEXML information.
Currently the demonstrator has prepared for four types ("Odlo", "Dublin”, "London" and "Geneva'), but
currently only two are ready, namely "Odlo" and "Dublin".

In addition you can specify "Web Information” as a web address with information on this server. Notice that
the "Offline catalog" property of servers are not used in the current version.

Administration > Work Offline/Work Online

This SynEx client is obviously meant for online work, either via an intranet, an extranet or internet itself, and
initialy it will be in online mode. However, by executing the "Work Offling" command it will also be possible to
view record information based on files stored locally.

In offline mode then login is redundant and when presented with the login information box any user name
and password will be accepted. When making a request (the "Record Search” command - see below) for a
particular record, folder or document, this information must already exist in a file previously made by executing
the "Save" command on arecord, folder or document (see below).

The client uses a particular offline catalog on a loca disk when working offline. The default catalog is
"C:\SynExClient\Offling", but this can be changed with the "Set Offline Catalog" command.

Administration > Set Offline Catalog

Specify a new offline catalog; see also "Work Offling"/"Work Online" above.

Records, folders and documents that are saved to file will be stored in files under a catalog, within the
offline catalog, with the same name as the server from which they are retrieved. See the "Save" command for
RecordFolder, FolderRIC and ComRIC below.

Administration > Set Default Server

The default server is used to retrieve information on SynEx information servers and available servers (see
"refresh” above).

Administration > Load Cache from File

A cachethat is saved to file, i.e, viaa set of ADO-XML files, can be reloaded with this command.

PS: This command cannot be used in the current version since a complete update of the tree-view according
to the new cache content has not been implemented!

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 15

Administration > Save Cacheto File
The content of the client cache is saved to a set of ADO-XML filesin a specified catalog on the local disk.

Debug > Trace Information

When the client executes, errors, warnings and various kinds of notifications are sent to a Trace Manager
component. This information can be viewed in the right HTML frame.

Debug > Cache Information
This selection lets you view the current content of the cache (for debug purposes only).

About
Information on the demonstrator.

Exit
Exit the demonstrator.

352 Server Menu (a"world" icon)
OnlineHelp
Theright HTML frame will navigate to the "Web information" address of the selected server.

Properties

Various information on the selected server will be provided in the right HTML frame.

LogOn

Log on to this server by entering a user name and a password.

Edit Server

Edit the properties of this server.

Delete Server

Remove this server.

3,53 Login Menu (a"key" icon)
Properties
Various information on the selected login will be provided in the right HTML frame.

Record Search
Specify arecord, folder or document to retrieve from the server to which this login applies.

Refresh Login

A login may time-out after a certain time period without user action; e.g. the Odo Synapses Server will time-out
after 20 minutes without client activity. This command can be used to refresh a particular login if needed.

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 16
L ogOff

Log off - end thislogin.

3.5.4 RecordFolder Menu (a" patient” icon)
Properties
Various information on the selected record object will be provided in the right HTML frame.

Set Presentation
See the description of this command under the ComRIC menu.

Save
The specified record is saved to afile locally on the client. Notice that this implies a refresh of the cache, and
notice that only the structure of arecord is saved (its "shape”, i.e., its documents are leaf nodes).

The record will be saved in a file with the following name:
record_<recordl D>_shape. xm

where <recordID> is its unique RecordID. The file will be saved in the following catalog:
<of fline catal og>\<server name>\<file nanme>

where <offline catdog> is the current offline catalog for the client (see "Work Offline€" in the root menu),
<sgrver name> is the name of the server from which the record is retrieved, and <file name> is the file name
composed as just explained.

Refresh

The current version of the specified record is removed from the cache, and then reloaded from the server.

Delete

The specified record is removed from the cache.

355 FolderRIC Menu (a"folder” icon)
Properties
Various information on the selected folder object will be provided in the right HTML frame.

Set Presentation
See the description of this command under the ComRIC menu.

Save
The specified folder is saved to a file locally on the client. Notice that this implies a refresh of the cache, and
notice that only the structure of afolder is saved (its "shape”, i.e., its documents are leaf nodes).
The folder will be saved in a file with the following name:
f ol der _<recor dl D>_<RCl D>_shape. xnl

where <recordID> and <RCID> is its unique identification within its Synapses server. The file will be saved in
the following catalog:
<of fl'ine catal og>\<server name>\<file nanme>

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 17

where <offline catdog> is the current offline catalog for the client (see "Work Offling" in the root menu),
<server name> is the name of the server from which the folder is retrieved, and <file name> is the file name
composed as just explained.

Refresh
The current version of the specified folder is removed from the cache, and then reloaded from the server.

Delete
The specified folder is removed from the cache.

356 ComRIC Menu (a" document™ icon)
Properties

Various information on the selected document object will be provided in the right HTML frame.

View Document

The document and its content is presented in the right frame according to the presentation format assigned to it;
see "Set Presentation” below.

Cache Document

The document and all its content, i.e., al its containing RIC's and their Recorditem's, are loaded from the
server and stored in the cache.

Notice that when requesting a particular record, or a folder or document within a record, with the "Record
Search" command under a login, then the content of documents are not received from the server. That is, the
documents are then leaf nodes in the structure of records received. Thus this command is used to retrieve the
content of specific documents.

Set Presentation

The demonstrator supports two different techniques for presenting a document and its content after being
received as a string of SynExML from the server, namely XSL (eXtensible Stylesheet Language) and DHTML
(Dynamic HTML).

Each document (ComRIC) can be assigned a preferred choice for presentation via this command. If no
presentation (default) is assigned to a document, then the XSL specification "default docview.xd" in the
cataog "C:\SynExClient\Common" will be used. You can replace the XSL within this file with your own
default if you like. However, while the current default XSL is the same as the default XSL provided by the
OSS ("oss-document.xdl™), the current version of SynEx Client is not able to utilize a default XSL specification
referenced within the XML received from the server. Thus irrespective of whether the server references an
XSL specification or not, if no other presentation is chosen for a particular document, via the use of this "Set
Presentation" command, then "default_docview.xdl" will be used.

As an dternative to XSL, a HTML file containing DHTML can be assigned to a document as its
presentation format. This can either be a DHTML file that includes an ActiveX control, responsible for the
presentation logic, or aternatively a DHTML file utilising VBScript or JavaScript only. Chapter 7 describes
how this use of DHTML works in further detail. SynEx Client's support for XSL and DHTML implies that any
user can customise document presentations without having to change or recompile any components other than
possibly new ones made by the user.

The presentation chosen for a particular document will be used when executing the "View Document"
command above. The "Set Presentation" command is also available for folders and records. The consequence
of this is that documents within this folder, or record, for which no presentation is defined, will use the
presentation assigned to their closest folder, or alternatively the presentation assigned to the entire record.

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 18
Save

The specified document is saved to a file locally on the client. Notice that this implies a refresh of the cache,
and notice that the entire content of the document is saved.

The document will be saved in afile with the following name:
docunent _<recordl D>_<RClI D>_al | . xni

where <recordID> and <RCID> is its unique identification within its Synapses server. The file will be saved in
the following catal og:
<of fline catal og>\ <server name>\<file nanme>

where <offline catdog> is the current offline catalog for the client (see "Work Offling" in the root menu),
<sgrver name> is the name of the server from which the document is retrieved, and <file name> is the file
name composed as just explained.

Refresh

The current version of the specified document is removed from the cache, and then reloaded from the server.
However, notice that this command does not reload the content of the specified document. For this an
additional "Cache Document” command must be issued as explained above.

Delete
The specified document is removed from the cache.

3.5.7 ViewRIC2Menu (a" pointer into" icon or a" database lightning" icon)
Properties
Various information on the selected ViewRIC2 object will be provided in the right HTML frame.

Retrieve Link Target

This command retrieves from the server the target of the specified ViewRIC2.

The target can be an entire record, a folder, a document, or also a RIC within a document. In the latter case
the entire enclosing document will be retrieved since a document is the least unit of retrieval from a Synapses
server.

Notice that if the target is arecord or afolder then only their structure will be retrieved, i.e., their documents
will be leaf nodes and "Cache Document” must be used to retrieve the content of these documents. If, on the
other hand, a document or parts of a document is the target then the entire document with all its content will be
retrieved and cached.

3.5.8 ViewRIC1Menu (a" spreadsheet+database” icon)
Properties
Various information on the selected ViewRIC1 object will be provided in the right HTML frame.

3,59 DataRIC Menu (a" spreadsheet" icon)
Properties
Various information on the selected DataRIC object will be provided in the right HTML frame.

SynEx
WP2 Deliverable D2.1

Seamless Integration of Distributed Electronic Patient Records

SHS-025
24. July, 2000
Ver 1.0- page 19

4. An Architectural Overview

4.1 Platform and Architecture

Figure 11 illustrates the layered architecture that has been designed and implemented in WP2. There is a client
presentation and interaction layer, which is the topic of this document, a web server, an application layer, and a
data layer. The web server is 11S (Internet Information Server) [12] with ASP (Active Server Pages) objects
and scripts as its interface. The application layer consists of COM (Component Object Model) [10] components
under the control of MTS (Microsoft Transaction Server) as the transaction server, and the data layer is an
L Server database [9] containing healthcare record information. At the Odo site the latter is the Oslo

Synapses Server (0SS).

Deliverable D2.2 describes this server-side platform in further detail.

IS - Internet Information Server

® DCOM Client

DCOM enabled
client application

(Visual C++/ATL)

MTS - Microsoft Transaction Server

0SS
Oslo Synapses Server

SQL Server

DB
(healthcare
records)

SynEXML generation

~\l|_/v DB interface
(TSQL
OLEDB Stored Procedures)

@ SynEx Client
IE5 - Internet Explorer 5 @ Simple Client
record | "
browser |:
(Flient input); document
E',-L'rl ; browser any web
e L browser
I Lg | (client output)
o L — E
ActiveX documents and controls,
XML parser, XSL processor
XML XML/XSL
formatted http HTML
rees response response
_____________________________ R it
| o O O
|
T
|
! \ OSSSession-
|
l OSSWeb- ManagerV/C
! ServerV/C (stateful,
! COM, dil)
|
| (stateless,
i COM, dll)
! (Visual C++/ATL)
|
i OSSCOM-
various plain ! ServerVC
HTML pages i (stateless,
| > com,di
|
|
|
|
]
|
|
i
|

Figure 11. The technical architecture of the SHS demonstrator..

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 20

Client-side Components

There are awide variety of different client types possible for a distributed information system. At one end there
are highly specialised and domain dependent "thick” clients, including e.g. extensive caching, and flexible
options for checking in and out information and then work on this information offline before updating the
server with changes made. At the other end there are "thin" clients with common web browsers, or also ultra-
light mobile devices with WAP/WML.

For reasons described below (XML+http=SOAP), clients can be made independent of the server-side
technology. However, for clients based on Microsoft technology the following are some relevant examples, as
illustrated in figure 11.

"Smple client” - Any web browser will be able to log on to the server and then select, retrieve and update
information.

"SynEx client” - The client consists of a set of ActiveX components that execute within e.g. Internet
Explorer astheir container.

"DCOM client" - The client accesses the server via DCOM (Distributed COM).

The "simple client" corresponds to what can be seen as a "true" web-client, while the "SynEx client" is more
like a traditional client application using web protocols for server interaction. The "simple client" may aso
include WAP based mobile devices with WML browsers. For reasons described below, DCOM is not a
particularly interesting option unless there is a very close relationship between the client and the server with
respect to whom has developed them, and which servers the clients will connect to. The "SynEx client"
alternative has been chosen in WP2.

Networ k Protocol

To make record information available on an extranet using common internet technology, the internet protocol
http (Hyper Text Transfer Protocol) is used for client-server interaction both ways.

XML for Exchanging Healthcare Record I nformation

XML [6] has the power to become the independent data exchange format of the future. The use of XML to
exchange data between heterogenous systems provides support for hierarchically structured patient data, user
defined tags and machine-understandable assertions for searching, reasoning and anaysing healthcare
information like federated healthcare record objects.

An XML DTD, called the SynExML (SynEx Markup Language), has been defined within the SynEx project
to be used for inter-site exchange of FHCR information. That is, SynEXML is the basis for semantic
interoperability between SynEx components that relate to FHCR information. The 2.1 beta 4 version of
SynExML, which is likely to become the final version for the duration of the SynEx project, is included in
appendix C of this document. SynEXML is based upon the generic FHCR structure defined within the Synapses
project [3][4][5], and most of its elements and attributes correspond one-to-one with record component
concepts and properties defined within the Synapses Server specification.

Microsoft currently works on a specification called SOAP (Smple Object Access Protocol) [7][8] where the
communication between a client and a server is formatted as XML over http both ways; i.e., as opposed to e.g.
DCOM (Distributed COM) or 110P (Internet Inter-ORB Protocol for CORBA [15]) also requests from a client
to a server is formatted as XML (as functions with arguments) which can then be parsed by the server and
acted upon. There are several advantages by this despite its functional simplicity relative to DCOM and I1OP.

http is a ssimple protocol with good coverage and few demands on the client, and, not the least, most
firewalls are readily configured for common security options dealing with well known internet protocols and
ports. This as opposed to DCOM or I1OP for which firewalls can pose a problem. In practice, the ability for
remote machines to interact via DCOM and 11OP is more limited. That is, DCOM and 11OP can be well-suited
for computers within e.g. alimited area, but not between "any" remote client and server on the internet.

Since XML amounts to strings of text it is well-suited for transmission via http, and the great benefit of
SOAP's combined use of XML and http is that it makes the underlying client- and server-side technology
transparent to each other. Thus similar to how component technology like COM provides for programming

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 21

language independence and technical interoperability locally, SOAP provides for platform independence and
technical interoperability globally.

Furthermore, WML which is used for accessing information from e.g. WAP based mobile phones is itself
XML, i.e, it is XML according to a particular XML schema definition. Thus information transmission with
XML iswell-suited for such mobile clients.

Since client requests received by a server is formatted as XML, instead of being received as e.g. low-level
RPC's, a lack of complete client-server version compatibility can be handled more gracefully. For example, if
an "old" client uses a "newer" server then the server may support a sightly different or extended set of requests
than those requested by the "old" client. However, to the degree that the server is able to understand the "old"
client's request, despite that it may not fully correspond to a request as expected by the "newer" server, the
server may till be able to serve the "old" client. This is not possible with e.g. COM reguests where e.g. a
missing function argument leads to an immediate error.

4.2 Digribution and Integration

SynEx Client

IES - Intenet Exlorer 5 client-side integration
.................. ("client distribution”)

o document

o
(10 |F browser | ’
\ tLg | !
\\ E_D ' ' /I
= / Dublin
Geneva '
SynExXML formatted > Dublin
. health recprd Synapses
Geneva ~+._information Server
Synapses
Server RN
T oo i London
| synepses Synapses Synapses | |
icati ! Server A Server B SeverC | | London
application | |
T | |:| <D <—> : Synapses
distribution | [] L]] L] [] ; Server
database
distribution

Figure 12. Client versus Application versus Database Distribution.

Shared Federated Healthcare Recordsin SynEx

The Oslo Synapses Server (OSS) and the Synapses Server specification does not rely on a central catalog
service for retrieving information on where various parts of a particular patient record resides. Instead this
information is distributed such that every record on a particular server has the information required to access
other parts of it that exists on other servers. Thus the hyperlink capabilities of OSS and Synapses, together with
XML and web technology as explained above, offer a good basis to realise shared federated healthcare records.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 22

Client versus Application versus Database Distribution

We can distinguish between different kinds of distribution in an information system architecture, namely
database-, application- and client distribution. Figure 12 illustrates this.

Database distribution utilises e.g. SQL Server distribution features, while distribution at the application layer
is handled by MTS as a collaboration of MTS objects that reside on different computers. Distributed
transactions in both MTS and SQL Server are handled by the same DTC (Distributed Transaction Controller).

By "client distribution” is here meant that distributed information is integrated at the client level, i.e., asthe
result of a client's request for related but distributed information (e.g. distributed information on a particular
health record). The application and data layers are not involved in the distribution except that they may contain
information on how and where to get access to related information that resides el sewhere.

Database distribution should be transparent to the application layer, while distribution at the application layer
should be transparent to its clients. Typicaly, the database and application layer distribution are "local"
distribution in the sense that the databases or application components exist on computers in physical proximity,
or at least the same devel opment organisation is in charge of configuring each participant in the distribution.

Client side integration may well be an integration of globally distributed information where the organisation
offering the server side functionality and information may have no knowledge of who are the clients, and the
client devices can be common web browsers, mobile phones, etc, making a connection to the server from
anywhere in the world.

Synapses records are well-suited for this kind of client side integration since we do not foresee any need for
client-side transactions to span more than those parts of a record that reside in a single server. That is, this
is a constraint that in our experience will not severely hamper the users work with health record information,
but it greatly simplifies the transaction handling of globally distributed health records.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 23

5. SynEx Client Components
51 Implementation, Source Code and Project Files

All components that constitute the SynEx Client are implemented in Visual Basic. The reason for choosing
Visual Basic for the client, as opposed to Visua C++ used for the server-side components (see deliverable
D2.2), is its much better cost-effectiveness in development time relative to Visual C++. Performance
requirements on the client-side does not mandate the use of Visual C++, and despite being more inflexible than
Visual C++ it is sufficient for our purposes.

However, the interfaces of SynEx Client components are specified in IDL, but Visua Basic and IDL are not
fully compatible. That is, the IDL specification is converted into a Microsoft type library with the MIDL
compiler, and then this type library is used by Visua Basic via its "Implements' statement. There are two
disadvantages, however. One is that outgoing interfaces(events) and connection points cannot be implemented
in Visual Basic based on IDL specifications. Thus the correspondence between the IDL specification provided
here and the Visua Basic implementation is not 100%. More specifically, events raised by the CacheManager
component within the "VBClientCache.dll" module can only be received via a "WithEvents' reference to the
CacheManager object itsdf, not via a reference typed according to the IDL specification (eg.
IsxcmanCacheManager). Furthermore, Visual Basic cannot implement IDL interface inheritance. Thus the
inheritance relationships illustrated in the object model in figure 17 below cannot be implemented in Visud
Basic. Instead the Visual Basic components will use severa "Implements' statements to implement each of the
involved interfaces separately.

Sour ce Code

The source code for the current implementation of the SynEx Client comes as a zip file named:
oss-client-wp2-vn.m.zip

where the bold n.m states the version. When extracting the content of this file, the following catalogs are

produced:

- ClientFiles . Contains four catalogs "Common", "DHTML", "HTMLapplication" and
"Samples' that must exist on a client computer running SynexClient.
See below for more details.

- SynExClientiDL : The IDL specification for the SynEx Client components. It exists as part of a
Visual C++ project in order to use the MIDL compiler to generate a corresponding

type library.
- ClientTypeLib : The type library generated by the Visual C++ project in the above

SynExClientIDL catalog is placed in this catalog. The Visua Basic implementation of
the components reference this type library.

- VBTraceManager : The Visua Basic project for the "VBTraceManager.exe” module.

- VBSynExProvider : The Visua Basic project for the "VBSynExProvider.dll" module.

- VBFHCRProvider : The Visua Basic project for the "VBFHCRProvider.dll" module.

- VBClientCache : The Visua Basic project for the "VBClientCache.dll" module.

- VBSynExClient : The Visual Basic project for the "VBSynExClient.ocx" ActiveX control.
- VBInfoView : The Visua Basic project for the "VBInfoView.ocx" ActiveX control.

- VBDocView : The Visual Basic project for the "VBDocView.ocx" ActiveX control

The projects should be compiled in the following sequence:

1. SynExClientiDL ~ Notice: Only compile the IDL file (with the MIDL compiler) - not the project!
Then copy the "SynExClientIDL.tIb" file to the ClientTypeLib catalog.
2. VBTraceManager

3. VBSynExProvider

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ver 1.0 - page 24

4. VBFHCRProvider

5. VBClientCache

6. VBSynExClient

7. VVBInfoView

8. VBDocView (thisis an example for demonstration purposes only)

SynEx Client Files

When executing the SynEx Client it depends on a number of files under the root catalog "C:\SynExClient".
These files must be organised into the following four catalogs, corresponding to their organisation in the
"ClientFiles" catalog of the above zip file for source code distribution:

- C:\SynExClient\Common : files required for offline operation

- CASynExClien\DHTML : files required for user output in the right frame

- C:\SynExClient\HTMLapplication : files for executing the SynEx Client application
("synexclient-main.html" is the application home page)

- C:\SynExClient\Samples : some DHTML demonstration files (uses the VBDocView control)

5.2 Client Component Architecture

5.2.1 An Outline

Figure 13 illustrates an outline of the principal architecture for the SynEx Client. Notice the difference between
the application dependent versus the application independent components. The GUI components are specific to
the SHS Demonstrator, and, as already mentioned, they have not been emphasised in this project (not
production quality). The other components, i.e., a client cache, components for connecting to various Synapses
webservers and components for parsing received XML, are application independent. They can be reused, as
COM components, in heathcare information systems that require access to healthcare records. They are the
main software deliverable in WP2 (for the client-side).

The application independent components are divided into three different kinds of components. One set of
components implement a cache on the client for storing retrieved healthcare records. This makes it possible to
work with the records in offline mode. A user can aso at any time save the current cache to a set of files on the
local file system, and then reload this cache later on. The current cache is implemented with ADO (Microsoft
Active Data Objects) [11], but the implementation of the cache is transparent to other client components. Thus
the cache can be implemented by the use of some other suitable technology, e.g. XML DOM object structures,
without affecting other parts of the client.

The set of components named "Data Provider™'s are responsible for communication with different kinds of
webservers offering record information formatted in SynExXML. For example, connecting to the OSS webserver
(NS with ASP and SOAP) is different from connecting to the Dublin webserver (CGI-scripts). Webserver
requests have also not been standardised (yet) within SynEx. Thus a different Data Provider component is
made for each type of webserver, and one Data Provider for offline mode (accessing local storage instead of a
webserver).

Finally there is a set of XML parser components, one component for each kind of XML that can be
received. These are responsible for parsing XML received via a Data Provider, and then inserting the results
into the cache. For example, there is one parser component for SynExXML, one for information on available
Synapses servers, and one for information on SynEx information sources.

The purpose of such a categorisation of components is to alow one component to change without this
having unforeseeable consequences on other components. For example, minor changes in the SynExXML, that
does not affect information content, can be carried out in the SynEXML parser component without affecting
other parts of the client.

SynEx
WP2 Ddliverable D2.1

Seamless Integration of Distributed Electronic Patient Records

SHS-025
24. July, 2000
Ver 1.0 - page 25

http

<

<4»| Cache Manager e
t \.4
>
Cache
GUI
<
SHS Demonstrator specific Application independent

Figure 13. An outline of the SynEx Client component architecture.

5.2.2 The SynEx Client GUI

Figure 14 illustrates the organisation of the GUI components, which amounts to a set of HTML pages with
ActiveX controls. These are specific to the SHS Demonstrator. The application start page is "C:\SynExClient\-
HTMLapplication\synexclient-main.html", which contains two frames. The left frame (framel) is aways
"C:\SynExClient\HTMLapplication\synexclient-framel.html",
"VBSynExClient.ocx". As illustrated in chapter 3, this is a tree-view control through which user interaction

takes place.

Internet Explorer

synexclient-framel.html <

frame2

synexclient-main.html

(with two resizable frames)

contains the ActiveX control

synexclient-frame2.html

sxtrace.html

sxviewser ver.html

sxeditserver .html

sxnewserver.html with VBInfoView.ocx
sxlogin.html

sxric.html

sxrecordsear ch.html

sxviewdoc-script.html
sxviewdoc-axctrl.html with AXDocView.ocx

Figure 14. The SynEx Client graphical user interface, which is specific to the SHS Demonstrator.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 26

During application start-up then the right frame (frame2) is "C:\SynExClient\HTMLapplication\synexclient-
frame2.html". However, once the "VBSynExClient.ocx" control is loaded and ready, it will take control of the
right frame and navigate to various other pages either locally or on the web. Thus the right frame can be seen
as aregular browser window under the control of the ActiveX control in the left frame.

Most of the output provided in the right frame will be based on DHTML files residing in the catalog
"CASynExClien\DHTML\sx<....>.html" (where <.....> are different names like "trace", "viewserver", etc).
These files contain the ActiveX control "VBInfoView.ocx", which interacts with the "VBSynExClient.ocx"
control in the left frame. By designing new XSL specifications and/or new DHTML pages with or without new
ActiveX controls (or Java Applets), it is possible for a client to completely control presentations in the right
frame without changing any of the existing GUI components. Chapter 7 describes thisin further detall.

5.2.3 SynEx Client Modules and Components

Figure 15 illustrates a more detailed overview of the modules and components that constitute the SynExML
Client, and a reference to the COM interfaces that they implement. Chapter 6 provides a more detailed
description of each of these interfaces, and the object model that they constitute.

Notice that we will use the term "modul€" for dll, ocx (ActiveX controls) and exe files that contain a set of
COM components, and the term "component” for COM co-classes, VB class modules, VC++ classes, etc, from
which objects can be instantiated.

The "VBSynExClient.ocx" GUI ActiveX control, residing in the left frame, contains the GUIClient
component which handles most of the user interaction viaits tree-view control. It also contains the DocBrowser
component which is responsible for information output in the right frame. That is, DocBrowser interacts with
other GUI ActiveX controls like "VBInfoView.ocx" and "<custom made>.ocx" (e.g. "VBDoclnfo.ocx") as will
be explained in chapter 7 below. In addition it contains a number of Visual Basic forms, "frmooxxx”, for various
user interaction.

The "VBClientCache.dll" module contains the components CacheManager and Cache which together
congtitute the client cache. The cache is currently implemented by a set of ADO Recordsets, and the next
section below describes its implementation in further detail. The cache also provides a number of iterator
components for objects that a client will use to traverse and access cached information.

The "VBFHCRProvider.dil" module contains a set of data provider components and an XML parser
component for SynExML. That is, relative to figure 13, data providers and the XML parser components that
they need are implemented within the same module in this case since we do not foresee any need to distribute
them independently as two separate modules. A data provider is made for each of the SynEx server types, i.e.,
"Odl0", "Dublin®, "London" and "Geneva'. At the moment only the "Odo" and the "Dublin" servers are
available. In addition there is a separate data provider for use in offline mode. This provider accesses files on
the locdl file system instead of making requests to a webserver. SynExML formatted XML received by one of
these data providers, or read from file by the OfflineProvider, are delivered to the SynExMLParser component.
This component is responsible for parsing the XML and inserting the record information into the cache.

The "VBSynExProvider.dll" module is similar to the "VBFHCRProvider.dll" in the sense that it contains
two data provider components and two XML parser components. The ServerInfoProvider component is used
to retrieve information on available servers, and the XML that it receives is parsed by the ServerlnfoParser
component. Similarly, the SynExInfoProvider component is used to retrieve information on SynEx information
sources, and SynExInfoParser is used to parse the XML received for this.

SynEx
WP2 Ddliverable D2.1

Seamless Integration of Distributed Electronic Patient Records

SHS-025
24. July, 2000
Ver 1.0 - page 27

TraceManager .exe

TraceM anager

A— — A

|

VBSynExClient.ocx ! VBClientCachedll VBFHCRProvider dil 1

| , |

|| b) oL odoser |

! oSer ver |

i)o /E\‘ O— CacheManager i

GUIClient i

® 1|0 bublinserver |

| |

RN 0~ LondonServer !

! Cache _ i

DocBrowser I ol GenevaServer i
I

|) |

{ | ! " 0— OfflineProvider |

|

frmxxxxx ! o~ IterSynExinfo | |
|

I e l |

/'/ o | ter Server | |

I Cf i |

f) . {

VBInfoView.ocx | O—| IterLogin | E
|

) I

I

o IterRIC | | SynExMLParser || !

<custom made>.ocx ! h) !

: | ter Recor dl tem |

| |

GUI | |

| |

| |

| |

| . |

I k) N K) > : http

! 7 F0— Server RO SyNEX| | &

! Serverinfd)| Info SynExinfo|)| Info :

i Provider Par ser Provider Par ser E

| |

| VBSynExProvider .dll '

f) IsxcshServer h) IsxcshRIShape

a) IsxguiLogininfo

b) IsxcmanCacheManager

¢) IsxcshCreateCacheObjects

I sxcshCacheSearch

d) IsxcshSynExInfo
| sxcshCollection

€) IsxcshLogin
IsxcshCollection

| sxcshCollection

0) IsxcshRICShape

| sxcshRIClnformation
I sxcshRICOperation

| sxcshRecordFol der
IsxcshFolderRIC
IsxcshComRIC
IsxcshViewRIC1
IsxcshViewRIC2
IsxcshDataRIC
IsxcshCollection

IsxcshRIInformation
I sxcshRIOperation

I sxcshRecordltem
IsxcshCollection

i) IsxprvFHCRL ogin
IsxprvFHCRInformation

J) IsxxmlFHCRParser

K) Isxprvinformation

[) IsxxmlParser

Figure 15. A detailed overview of SynEx Client modules and components.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 28

Read-Only Information Access

The current version of both client- and server-side components in the WP2 deliverable is prepared just for
read-only access to Synapses healthcare record information. The reason for this is that within SynEx we have
not (yet) standardised on write access to record information. It will be simple, technically, to extend access to
the Oslo Synapses Server to include write access; including both record updates as well as the creation of new
records and documents. This just amounts to invoking existing functions for this in the OSS. The only
limitation regarding write access is that, as explained in section 4.2, no transaction should span more than those
parts of a record that reside in a single server. This is also a constraint that applies to the current version of
OSS itself.

5.3 Client Cache

The client cache is implemented by a set of ADO recordset's, as illustrated in figure 16. That is, each entity
"rs<....>" in the diagram represents a particular recordset. All the attributes of each recordset are listed within
the entity, but associations are also illustrated in order to make it easier to understand their relationships (but
these are all implemented by the attributes listed!). Sets of attributes in bold constitute unique (candidate) keys
for each recordset.

For performance reasons these recordsets are not fully normalised; e.g. the ServerID attribute of
rsRICShape can be derived from its Loginl D attribute, and so on. Furthermore, a different recordset is used for
each of the different kinds of RIC's, and both RIC's and Recordltem's are split into a structural part ("shape™)
and their information carrying part. This was done to avoid too large recordsets, but practice seems to indicate
that there are no performance problems (with respect to recordset search) for the number of rows involved
here. Due to the encapsulation of the VBClientCache module, any changes to the cache implementation can be
performed without affecting other parts of the client.

Most of the recordsets and their attributes correspond one-to-one with the Synapses healthcare record
specification (or in this case, the SynEXML). rsServer and rsLogin stores servers and logins, respectively, while
rsSynexinfo stores information on SynEx information sources. However, rsLoginRootRIC is a recordset for
implementation reasons only. It is used to identity RIC's that are the root of a particular part of arecord that is
cached. For example, if an entire record is cached then its RecordFolder RIC will be the root, while if only a
particular folder or document within a record is cached, not the entire record, then this FolderRIC or ComRIC
will be a"root RIC" in this sense. The purpose of identifying such "root RIC'S" is that this simplifies updates to
the tree-view control after new records or parts of records are cached.

Finaly, while most attributes are aso sdf-explanatory relative to the Synapses hedthcare record
specification, the status attribute of the RIC and Recordltem recordsets only exist for implementation purposes.
The cache does not support concurrent multi-user access, but it must be able to recover from situations where
there are errors in the XML received. That is, during the parsing of received XML the XML parser component
will insert record information into the cache via a number of insert functions (see chapter 6). If an error occurs
then it must be possible to rollback any changes made, and the status attribute is used for this. When a new
RIC or Recordltem is inserted it is first stored with status=2 (new), and if the same RIC already exists then all
RIC's underneath it, and all its Recorditem's, have their status changed from O (active) to 1 (old). If the overall
cache operation is eventually committed then al RIC's and Recorditem's with status=1 (old) are removed,
while al with status=2 (new) are changed into 0 (active). Alternatively, if the overal operation is rolled back
then those with status=1 (old) are changed into 0 (active), while those with status=2 (new) are removed.

SynEx
WP2 Deliverable D2.1
Seamless Integration of Distributed Electronic Patient Records

SHS-025
24. July, 2000
Ver 1.0 - page 29

rsServer
ServerlD : long rsLogin
1’_'%29. sf:lrr%g LoginID : long
Address : string 1..1 * g:?&g‘r?g] faL:Osrt]rmg
Weblnfo : string -—ong
OfflineCatalog : string 1.1

rsSynExInfo

Name : string
Address : string

rsRICShape +succ\0..1 o,.1/+pred
ServerlD: Long rsRIShape
LoginID : Long :
RecordID : string EeryeIrIIDQ .LLong
f RCID : string ogin - -ong
rsLoginRootRIC ST ST RecordID : string
Ser\(erID :Long « |RICType : string +home . RCID : string)
LoginID : Long Parent : String SynapsesType : string
RecordID : String|(o..1 +root FirstChi.Id - String 1.1 +dynamic RIType : string
RCID : String Pred : Striﬁg aitribute |Parent : String
Status : integer TargetServerID : Long Flrst9h|ld_: String +parent
. Qri * urce Pred : String
TargetRecordID : String Qi
NP HomeRIC : String
TargetRCID : String Status : integer
TargetServerAddress : string arget : 9
Status : Integer 0.1 1.1
1.1
1.13.

1. 1.1
rsRecordFolder 11\ 4 rsRecordltem
rsFolderRIC : ServerID: Long

rsComRIC rsV|evMRIC1 | LoginID : Long_
rsVie\NRICZ | RecordID : String
ServerID : Long 1 1 RCID : String
LoginID : Long rsDataRIC ClassName : string
RecordID : String ServerlD : Long Value : string
RCID : St””.g) LoginID : Long Type : string
ClassName : string RecordID : String Language : string
DR sl RCID : String DataType : string
. Langpagg - string ClassName : string LogTime : string
L | Legiie & SEl Type : string LogUserID : string
LogUserlD : string L_| |Language : string InvalidationTime : string
Inval}dat]onTlme : string — LogTime : string InvalidationUserID : string
InvalldathnUserII_D : string LogUserlID : string EventBeginTime : string
Presenta_\tlon . string InvalidationTime : string EventEndTime : string
Status : integer InvalidationUserID : string Cluster : string
Status : integer InternalDataType : string
Format : string
Status : integer

Figure 16. ADO recordset'sin the cache.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 30

6. Client Object Model
6.1 Cacheand CacheManager

Figure 17 illustrates the object model provided by the cache and the cache manager components, and the
following is a brief description of each of the interfaces involved. Notice that many of the functions in these
interfaces correspond one-to-one to menu commands in the tree-view control. These are already described in
section 3.5.

As mentioned above, Visual Basic cannot implement IDL inheritance relationships. Thus the inheritance
relationships in this object model are not actually implemented by our Visual Basic components. Instead the
iterator components in figure 15 implements the inheriting interfaces individually.

| sxcemanCacheM anager

This interface is implemented by the CacheManager component, and its functions are aready described in the
above. The boolean result of the SaveCache, LoadCache, LoadServerinfo and LoadSynExInfo functions
indicate success or failure.

I sxcshCreateCacheObjects

Functions within this interface are used to fill the cache with SynExML formatted record information. For
Synapses servers that does not provide the RecordID attribute (which is optiona in the SynExML) then the
GenerateNewRecordID function can be used to generate a RecordID unique within the current cache. The
RecordID of such records, or record parts, can not be used to later identity this record at its origina server,
however.

The PostRecordCaching function must be called after a caching operation to indicate success/commit
(inAction="Commit") or failure/rollback (inAction="Rollback") of the entire operation.

| sxcshCacheSear ch
This interface contains functions to search for particular objects, or collections of objects, in the cache.

| sxcshCollection

Thisis an interface with functions to traverse a collection of objects.

Notice that each of the iterator components, e.g. IterRIC, can be used to represent both a single particular
object, e.g. a particular RIC, and aso a collection of such objects, simultaneously. This because the iterator
components al implement this interface beside its other corresponding iterator interface, e.g. IsxcshRICShape.

A function that returns a collection of objects will never return "null, i.e,, it will always return an iterator
representing the collection, but if the collection is empty then its MoveFirst function returns "false".

Notice also that in the diagram, the type of the objects that participate in a particular collection are written in
square brackets after the IsxcshCollection interface.

I sxeshSynExInfo

Access to properties of SynEx information sources.

| sxcshServer
Properties and functions of available servers.

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 31
IsxcshLogin

Properties and functions of logins. The Cache and Get functions use the corresponding functions of the data
provider component that correspond to the login's server type.

I sxcshRICShape

This interface can be used to traverse a structure of RIC objects. When an iterator object represents a
particular RIC object, then after invoking its GoParent function it will represent the parent RIC object of this
object, if any exists. The boolean return value indicates whether the traversal succeeded or failed. In case of
failure the iterator will represent the same object as before the function call.

The Recordltems function returns a collection of al Recorditems attached to the RIC object. The Sources
function returns a collection of all ViewRIC2 objects, if any, that references this RIC object as its target. For
ViewRIC2 abjects then the Target function will return an iterator for its target RIC object.

Notice that when using the Clone function then if the iterator objects aso represents a collection of objects,
the new iterator object will not copy this collection. It will only be a new iterator for the single RIC object
represented by the iterator object being cloned.

The SynapsesType property returns the RIC object's basic Synapses SynOM type, e.g. "RecordFolder" or
"ViewRIC2", while its RICType property may return an OSS specific specidisation of these basic Synapses
SynOM types.

| sxcshRI Clnfor mation

This interface contains common RIC properties.
The Type property corresponds to the RICType property of 1sxcshRICShape.

I sxcshRICOperation

This interface contains common functions for RecordFolder, FolderRIC and ComRIC objects. They
correspond to the menu commands available for corresponding tree-view items, as described in section 3.5.

| sxcshRecor dFolder

This interface contains functions concerning the presentation of documents within a record (RecordFolder); see
section 3.5.

| sxcshFolderRIC

This interface contains functions concerning the presentation of documents within a folder (FolderRIC); see
section 3.5.

| sxcshComRIC

The Get/SetPresentation functions concern the presentation of the document, as described in section 3.5. The
CacheContent function can be used to cache the content of the document. The GetAttributes function returns a
collection of every Recorditem of a particular class (specified by the inClassName argument) within the
document. Notice that this function returns Recordltems attached to any RIC object within the document, not
just those attached to the document root ComRIC object.

IsxcshViewRIC1

This interface has no functions.

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 32
| sxcshViewRIC2

This interface contains properties and functions applicable to ViewRIC2 objects.

The CacheTarget function will cache the targeted record, folder or document, and the boolean result indicates
whether this succeeded or not.

| sxcshDataRI1C

This interface has no functions.

| sxcshRI Shape

Thisinterface is similar to the IsxcshRICShape interface, and can be used to traverse a structure of Recordltem
objects.

The HomeRIC function returns an iterator for the RIC object to which the Recorditem abject belongs.

I sxcshRIInformation
This interface contains common Recordltem properties.

I sxcshRIOperation
This interface has no functions.

| sxcshRecordltem
This interface has no functions.

<<Interface>>
IsxcshCreateCacheObjects

InsertSynExInfo(...) : Boolean
InsertServer(...) : Boolean

InsertLogin(...) : Boolean

<<Interface>> PostRecordCaching(...) : Boolean
| IsxcmanCacheManager | InsertRICShape(...) : Boolean
OfflineCatalog : string InsertRecordFolder(...) : Boolean
DefaultServer : string InsertFolderRIC(...) : Boolean

1..1|InsertComRIC(...) : Boolean

GetCacheCreation() : IsxcshCreateCacheObjects InsertViewRIC2(...) : Boolean
GetCacheSearch() : IsxcshCacheSearch InsertViewRIC1(...) : Boolean
Exit() 1.1 InsertDataRIC(...) : Boolean
WorkOffline() InsertRIShape(...) : Boolean
WorkOnline() InsertRecordltem(...) : Boolean
I1sOnline() : Boolean GenerateNewRecordID() : string
SaveCache(...) : Boolean
LoadCache(...) : Boolean 1.1
LoadServerinfo() : Boolean <<Interface>>
LoadSynExInfo() : Boolean IsxcshCacheSearch
RegisterLoginGUI(...)

GetCacheManager() : IsxcmanCacheManager
FindAlISynExInfos() : IsxcshCollection[lsxcshSynExInfo]
FindAllServers() : IsxcshCollection[IsxcshServer]
FindAllLogins() : IsxcshCollection[IsxcshLogin]
FindServer(...) : IsxcshServer

FindLogin(...) : IsxcshLogin

FindSynExInfo(...) : IsxcshSynExInfo
FindRICShape(...) : IsxcshRICShape
FindRecord(...) : IsxcshRecordFolder
FindFolder(...) : IsxcshFolderRIC
FindDocument(...) : IsxcshComRIC
FindRIShape(...) : IsxcshRIShape
FindRecordltem(...) : IsxcshRecordltem

SynEx
WP2 Ddliverable D2.1

Seamless Integration of Distributed Electronic Patient Records

SHS-025
24. July, 2000
Ver 1.0 - page 33

<<Interface>>
IsxcshServer

ServerID : Long
Name : string

Type : string
Address : string
Weblnfo : string
OfflineCatalog : string

<<Interface>>
IsxcshLogin

<<Interface>>
IsxcshSynExInfo

LoginID : long
UserName : string

Name : string
Address : string

Server() : IsxcshServer
R00tRICs() : IsxcshCollection[lsxcshRICShape]

*

1.1

FindLogin(...) : IsxcshLogin

Logins() : IsxcshCollection[IsxcshLogin]
LogOn(...) : Boolean

Delete() : Boolean

<<lInterface>>
IsxcshRIShape
ServerlD : Long
LoginID : Long
RecordID : string
RCID : string
SynapsesType : string

GoParent() : Boolean
GoFirstChild() : Boolean
GoSucc() : Boolean
GoPred() : Boolean
HomeRIC() : IsxcshRICShape
Clone() : IsxcshRIShape

<<Interface>>

IsxcshRlInformation
ServerlD : Long
LoginID : Long
RecordID : String
RCID : String
ClassName : string
Value : string
Type : string
LogTime : string
LogUserlD : string
InvalidationTime : string
InvalidationUserID : string
EventBeginTime : string
EventEndTime : string
Cluster : string
InternalDataType : string
Format : string

JAN

<<Interface>>
IsxcshRIOperation

JA\

<<Interface>>
IsxcshRecordltem

Refresh(...) : Boolean

LogOff() : Boolean
CacheRecordInfo(...) : Boolean
CacheFolderinfo(...) : Boolean
CacheDocumentinfo(...) : Boolean
GetRecordinfo(...) : Boolean
GetFolderlnfo(...) : Boolean
GetDocumentinfo(...) : Boolean

<<Interface>>
IsxcshCollection

MoveFirst() : Boolean
MoveNext() : Boolean

1.1

*

* 1.1
+recorditems

<<Interface>>
IsxcshRICShape

+homeRIC

+firstChild

+parent

0.1

+rstcilid:

ServerlD : Long
LoginID : Long
RecordID : String
RCID : String
SynapsesType : String
RICType : String

Login() : IsxcshLogin

Server() : IsxcshServer

GoParent() : Boolean

GoFirstChild() : Boolean

GoSucc() : Boolean

GoPred() : Boolean

Recordltems() : IsxcshCollection[IsxcsgRIShape]
Sources() : IsxcshCollection[IsxcshRICShape]
Target() : IsxcshRICShape

Clone() : IsxcshRICShape

0.1 \[Harget
<<Interface>>
IsxcshRICInformation L\Fsource
ServerlD : Long
LoginiD : Long <<Interface>>
RecordID : String IsxcshViewRIC2
RCID : String TargetServerID : Long
ClassName : string :‘ TargetRecordID : String
Type : string TargetRCID : String
Language : string
LogTime : string TargetServer() : IsxcshServer
LogUserID : string CacheTarget(...) : Boolean

InvalidationTime : string
InvalidationUserID : string

<<Interface>>
IsxcshViewRIC1

<<Interface>>
IsxcshRICOperation

IsxcshDataRIC

<<Interface>>

Save(...) : Boolean
Refresh(...) : Boolean
Delete() : Boolean

<<Interface>>
IsxcshRecordFolder

<<Interface>>
IsxcshFolderRIC

<<Interface>>
IsxcshComRIC

GetPresentation() : String
SetPresentation(...) : Boolean

GetPresentation() : String
SetPresentation(...) : Boolean

GetPresentation() : String

SetPresentation(...) : Boolean

CacheContent(...) : Boolean

GetAttributes(...) : IsxcshCollection[IsxcshRIShape];

Figure 17. The object model provided by the cache and the cache manager components.

Outgoing I nterfacesEvents

As mentioned above, Visua Basic does not support the implementation of outgoing interfaces specified in IDL.
Thus the IsxoutEvents interface in the IDL specification (in appendix A) is not actualy implemented, but
instead the CacheManager component itself provides the corresponding events along a "WithEvents' reference
typed as CacheManager (instead of being typed |sxoutEvents).

Notice that the RICAdded/RI CRefreshed/RICRemoved events only trigger for the "root RIC" of a particular

record, or part of a record, as explained in section 5.3. They do not trigger for each individua RIC
added/refreshed/removed.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 34

I sxguiL oginlnfo

This is like an outgoing interface from the CacheManager component in the sense that it requires its client,
which in this case is the GUIClient component (figure 15), to implement this interface. A client of
CacheManager must provide a reference to its IsxguiLoginlnfo interface by calling the |sxcemanCacheManager
function RegisterLoginGUI. CacheManager uses this interface to make a request for login information; i.e.,
user name and password.

6.2 DataProvider and XML Parser Components

In addition there are the following interfaces supported by the data providers and the XML parsers as illustrated
in figure 15.

IsxprvFHCRL ogin

This interface is implemented by each of the SynExML data providers in figure 15; i.e., the offline mode
provider, and each of the different server type providers. It has functions for logging on and off a particular
webserver address.

| sxprvFHCRI nformation

This interface is also implemented by each of the SynExML data providers in figure 15. It has functions used
by its clients to retrieve SynEXML on a particular record, folder or document. The difference between the
Cache versus the Get functions is that the Cache functions are used to store the retrieved information in the
cache, via the use of the SynExML parser component, while the Get functions return the result as an XML
string (inResponse="xml") or an HTML string (inResponse="html"). If inRetrieval="dl" then document
contents are aso included, while inRetrieval="shape" returns only the structure of records/folders/documents
and not document content.

Notice that the SetContextlnfo function must be called before using the Cache functions in order to provide
the provider with a reference to the cache, and information on to which login and server the information
belongs.

I sxprvinformation

This interface is implemented by the ServerinfoProvider and the SynExinfoProvider components. The
Cachel nformation function will retrieve the corresponding information and store it in the cache.

The SetContextlnfo function has the same purpose as in the | sxprvFHCRInformation interface, and must be
called before the Cachel nformation function.

| sxxmIFHCRPar ser

This interface is implemented by the SynEXML parser component. Its ParseAndCache function receives a
XML DOM reference and the result is inserted into the cache identified by first calling its SetContextlnfo
function.

| sxxmlPar ser

This interface is similar to the IsxxmlFHCRParser interface except that its SetContextinfo function only
requires information on which cache to insert the resuilts.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 35

7. Customising Document Presentations

As aready mentioned under the "Set Presentation” command in section 3.5, the demonstrator supports two
different techniques for presenting a document and its content after being received as a string of SynExML
from the server, namely XSL (eXtensible Stylesheet Language) and DHTML (Dynamic HTML). By designing
new XSL specifications and/or new DHTML pages with or without ActiveX controlsl, it is possible for a user
to completely control presentations in the right frame without changing any of the existing GUI components.

XSL Presentations

The support for XSL is fairly straightforward. That is, with the exception that the SynEx Client cannot use, "as
is', areference to an XSL specification within the XML received from the server. Either an XSL specification,
available on the local file system, must be explicitly assigned to a document with the "Set Presentation"
command, or if no such assignment is made then the "C:\SynExClient\Common\default docview.xsl"
specification will be used. Of course, by changing the content of this file you can define a new default XSL
specification to use as defaullt.

Notice: An important deficiency in the current version is that document presentation assignments are not made
persistent. Assignments made during a session will not be available when you start your next session!

DHTML Presentations

DHTML can be used as an aternative to XSL for document presentation. The advantage of DHTML over
XSL isthat DHTML is more explicit when it comes to organising the presentation layout.

DHTML presentations are assigned to documents the same way XSL specifications are assigned; i.e., by
using the "Set Presentation” command and selecting a DHTML file. However, the creation of new DHTML
files for presentation requires more intimate knowledge of the SynEx Client components than the XSL
specifications (which require knowledge on the SynExML format). Thus before considering DHTML for
document presentation, first consider the DHTML that is used for other kinds of information presentation.

Most information that is presented to a user in the right frame is made in DHTML; e.g. when presenting
server information, doing record search, viewing the client execution trace in case of problems, etc. The
DHTML files that are used for this are located under "C:\SynExClient\DHTML"; e.g. "sxviewserver.html",
"sxrecordsearch.html”, "sxtrace.html”, and so on. They al contain the ActiveX control "VBInfoView.ocx"
which is responsible for inserting information from the cache into the HTML.

Figure 18 illustrates the (rather elaborate) communication between the components involved. Initidly, when
first starting the application, then the GUIClient component in the left HTML frame (see figure 14) gets hold of
a reference to the window in the right HTML frame, and hands this over to the DocBrowser component (1).
The purpose of DocBrowser is only let a single object be responsible for presentation issues. Later on, when
e.g. the user requests information on a particular server by executing its "Properties® menu command, then
GUIClient receives this request via its tree-view control. It then calls the "prepareViewServer" method of
DocBrowser (2), after which DocBrowser navigates, in the right frame window, to
"C:\SynExClient\DHTML\sxviewserver.html* (3). This DHTML file contains the "VBInfoView.ocx" control,
and when the control is ready and loaded it gets hold of the "VBSynExClient.ocx" control in the left frame, and
thus access to the GUIClient component within this control (DocBrowser is made a private component within
"VBSynExClient.ocx". "VBSynExClient.ocx" (i.e.,, its ViewControl component) then sends the message
(method) " presentationControllsReady” to GUIClient, and GUIClient just forwards this to DocBrowser which
then invokes the "ViewServer" method of ViewControl within "VBSynExClient.ocx", and provides it with the
server information required. Finally the "ViewServer" method displays the information within the HTML of
"C:\SynExClient\DHTML\sxviewserver.html*.

1or Java Applets - provided they are able to communicate with COM components.

SynEx SHS-025
WP2 Deliverable D2.1 24. duly, 2000

Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 36

@ prepareObject

repare<operation>
GUIClient Prep P > DocBrowser

A @ performPresentation

@ navigate

v

@ presentationControl | SReady

windowFrame2

< windowFrame2
OCX @ SXxxxx.html with

VBInfoView.ocx

Figure 18. Interaction sequence between the interaction control ("VBSynExClient.ocx") in the left frame, and the
ActiveX control in charge of performing the document presentation in the DHTML pagein theright frame.

Indeed this may seem a little awkward, but the use of DHTML and its ActiveX control for server information,
record requests, etc, was made for "experimentation” purposes when implementing this demonstrator. It would
be much simpler to just use Visual Basic forms from the "VBSynExClient.ocx" control like e.g. those used for
login information, offline catalog selection, etc.

Now back to document presentations. DHTML used for document presentation need not contain an
ActiveX control. It may use an ActiveX control for its presentation logic, but it can aso be made entirdly in
HTML and VBScript or JavaScript. An example of both is provided with the SynEx Client source code. In the
"C:\SynExClient\Samples" catalog there is a DHTML file "sxviewdoc-script.html" with just HTML and
VBScript, and aso a similar file "sxviewdoc-axctrl.html" which uses the ActiveX control "VBDoclnfo.ocx" for
its presentation logic. Their differences are just that the VBScript code in the former is programmed within a
COM component in the latter (in this case in Visual Basic, but any COM supporting language could have been
used). You can see how these work by selecting them with the " Set Presentation” command.

When using DHTML for document presentations the component communication is not exactly as in figure
18. To illustrate this, see the listing of "sxviewdoc-script.html” below. The VBScript code, or the code in an
ActiveX control for the same purpose, does not use the "presentationControllsReady" method in figure 18.
Instead it uses the GUIClient method "DHTMLDocumentViewlnformation” to receive information on which
document to display, and, not the least, a reference to the cache (CacheManager). Hence if you want to create
your own DHTML document presentation, beside creating the HTML for this, al you need to do is change the
VBScript code within the " DisplayDocument” routine below (and similarly in the code for "VBDoclnfo.ocx™).

File " C:\SynExClient\Samples\sxviewdoc-script.html" (an example of DHTML in VBScript)
<HTM.>
<HEAD>
<META HTTP- EQUI V="Cont ent - Type" CONTENT="text/htm ; charset=wi ndows-1252">
<Tl TLE>Exanpl e DHTML page, with only VBScript, for presenting a Synapses heal thcare
docunent (ConRIC) </ Tl TLE>

<SCRI PT LANGUAGE="VBScri pt">
" Variabl es and object references
Di m r ef CacheManager
Di m nServer| D
Di m nLogi nl D
Di m nRecordl D
Di m nRCI D

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 37

Di sabl e the context nmenu - event triggered by context selection
Sub Document _OnCont ext Menu()

W ndow. Event . Ret ur nVal ue = Fal se
End Sub
" Initialize variables and object references
Sub W ndow_OnLoad()
On Error Resunme Next

Di m ot her Whd
Di m ref & her Cont r ol
' Find the window of the other frane (the left frame)
Set ot herWwhd = docunent. par ent W ndow. Top. f rames(" AXcont r ol Fr ame")
If (otherWhd I's Nothing) Then

MsgBox "Unable to find the windowin the left frame!", , "Error”
El se

Set ref Ot herControl = ot herWd. document. Al'l ("TVcontrol ")

If (refGtherControl |s Nothing) Then

MsgBox "Unable to find ActiveX control in the left franme!", , "Error"
El se
Set ref CacheManager = ref O her Control . DHTM.Docunent Vi ew nf or mat i on(
nServerl D,
mLogi nI D, _
mRecor dl D,
nRCl D)
I f (refCacheManager |s Nothing) Then
MsgBox "Unable to retrieve the Cache Manager!", , "Error"
El se
Cal | Di spl ayDocunent ()
End |f
End If

End |f

If Err.Nunmber <> 0 Then

MsgBox "Error: " & Err.Description, , "Error"
Err.d ear
End | f
End Sub

Routine for displaying the document identification

Sub Di spl ayDocunent ()

docunent . get El ement Byl d(" SXserverid").innerText = CStr(nServerl D)
docunent . get El emrent Byl d(" SXl ogi ni d").inner Text = CStr(mnLogi nl D)
docunent . get El ement Byl d(" SXrecordi d").inner Text = nmRecordl D
docunent . get El ement Byl d(" SXrci d").innerText = nRCI D

" NOTICE: This exanple does not utilise the refCacheManager, but, in general,
' since this reference is avail abl e any cache information can be
retrieved, fromits |IsxcnanCacheManager interface, and displ ayed

' ina DHTM. file like this!
End Sub

Rel ease obj ect references
Sub W ndow_OnUnl oad()
Set ref CacheManager = Not hi ng
End Sub
</ SCRI PT>
</ HEAD>

<BODY | D="SXdocunent" TEXT="#000000" BGCOLOR="#ffff00">

<P ALI G\="CENTER' >DHTM. page with VBScript for document presentation</P>
</ B></ FONT>

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 38

<P>This is an exanple of how you can create DHTM. pages for custom sed docunent
(ConRIC) presentation. This page only displays the identification of the docunent,
i.e., its ServerlD, LoginlD, Recordl D and RCID. However, since you have access to
t he cache, via the Cache Manager reference (|IsxcmanCacheManager), you can retrieve
docunent information and present it any way you like wi thin your (D) HTM. </ P>

<P ALI G\="LEFT" >Docunent identification: </ B></P>

<TABLE CELLSPACI NG=0 BORDER=0 W DTH=300 ALI G\N="LEFT">
<TR><TD W DTH="50% ALl GN="RI GHT" ><P>Ser ver| D: </ TD>
<TD | D="SXserverid" BGCOLOR="white" ALlI GN="LEFT"> </ TD></ TR>

<TR><TD W DTH="50% ALI G\N="RI GHT" ><P>Logi nl D: </ TD>
<TD | D="SXl ogi ni d* BGCOLOR="whi te" ALI G\N="LEFT"> </ TD></ TR>

<TR><TD W DTH="50% ALl GN="RI GHT" ><P>Recor dl D: </ TD>
<TD | D="SXrecordi d* BGCOLOR="white" ALI GN="LEFT"> </ TD></ TR>

<TR><TD W DTH="50% AL| G\N="RI GHT" ><P>RCl D: </ TD>
<TD | D="SXrci d* BGCOLOR="white" ALlI GN="LEFT"> </ TD></ TR>
</ TABLE>

<BR CLEAR="LEFT"/><BR/ >

<P>This page is made with VBScript only. In general, page functionality can be
programmed in both VBScript or JavaScript, or alternatively you can include an
ActiveX control or dll within the page to do the work. Visual Basic v.6 includes
a DHTML application w zard that you may find useful.</P>
</ BODY>
</ HTM.>

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 39
8. Security

Providing secure access to information is a key issue for healthcare information systems.

Authentication means that the server must be able to verify that the client is who he clams to be (e.g. via
password like mechanisms, smart-cards, etc), and also that no other person can take over a client's session on
the server without the server (and the client) being aware of this. The authentication mechanisms for the WP2
platform is described in the deliverable D2.2.

Authorisation and access control means that a client can only access or update information for which he is
authorised to do such operations. Authorisation and access control should preferably be considered an inherent
part of the overal system- and information modelling. This to make it possible to assign domain specific read
and write authorisations to various levels of granularity, e.g. read access to a particular document, but write
access only to a particular field in this document, and aso to be flexible with respect to dynamically changing
authorisations. Often there will be a trade-off between flexible access control versus performance. Thus
authorisation and access control mechanisms should be taken into consideration right from the start of the
analysis/design phase. The Oslo Synapses Server has aready built-in such mechanisms that are very flexible
and fine-grained; see deliverable D2.2.

Security relating to encryption of transferred information, client download of applets or ActiveX
components, and more, are also important security topics, but there has not been an in-depth consideration of
these issues within WP2 beyond what are common techniques for this.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 40

9. Concluding Remarks

What XML Isand Isn't

XML plays a key role in our architecture for transmission of information server-to-client and client-to-server
(and server-to-server). Thus to reconsider very briefly what XML is and isn't.

XML is a string of text formatted according to certain rules, where some of these rules are common to
every XML string (well-formed), while others may be defined in an accompanying schema definition (valid).
There are severa different kinds of XML schema definitions, e.g. DTD (Document Type Definition), XML
Schema, and more. An XML string can easily be saved to a file (a plain text file), but XML is not meant for
storing persistent information. That is, it is not principally different from how any text file can be used for that
purpose and XML is no aternative to databases for information storage. On the contrary, text based
information in XML, as opposed to other more specidised data formats, is very well-suited for database storage
such that the XML itself can instead be created on demand. When using XML in an information system as we
do then the XML strings may never exist in any files. More important is that when being transferred e.g. from
the server to the client the XML is atext string, while when being created and when being received by the client
it can be accessed and operated on as a data-structure (an object structure) with an interface of functions
(including events) as any other e.g. COM object. That latter is possible via the DOM (Document Object Model)
offered by XML parsers, asillustrated in figure 19.

XML DOM XML DOM
(Document Object Model) (Document Object Model)
transfer

< - >
XML string
<?xm version="1.0"?>
<SynExM. Sour ce="GCsl 0" >
<Docunent Nane="User_Access"
RCI D="10">
<Dat al t em Nanme="Honel t ent
Cl uster="26">
------ object structure
</ Dataltemr
</ Docunent >
</ SynExM_>

object structure

Figure 19. XML as a string of text and also as a structure of objects.

One lesson from SynEx, regarding what XML is not, is that despite that there are languages like DTD's and
others for defining XML schemas, XML is not a modelling language and therefore should not be used as such.

SynEXML is based on the Synapses healthcare record specification, but due to the very generic nature of
Synapses it has been a very time-consuming process for every site involved to agree on a common XML
format. For each of the numerous changes made (and many more are expected and required if SynExML will
live on) (at least) the XML parsing code had to be changed. We believe that these changes could have been
avoided by basing the information and object modelling on a proper modelling method, and instead use XML at
a"lower level" of the overall system development process.

UML (Unified Modelling Language) [13], and tools like e.g. Rational Rose [14], is becoming much of a
standard for object-oriented and relational modelling, analysis and design. An important benefit of using UML is
for communication purposes, both between software developers, but also between software developers and
domain experts since it is relatively easy to enable domain experts to understand what is expressed by a UML
model.

Hedthcare information systems, and healthcare record systems in particular, are open and generic
information systems in the sense that the kind of information that they must be able to manage is not fully
known at design-time. They will evolve over time, and they must be designed for this. UML can be a useful
tool not only for designing the information system itsdlf, but also for making it more generic and more adaptable
to changes and extensions over time. For example, in order for a client and a server to interact and
communicate in a meaningful way they must have a common understanding regarding which requests can be

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 41

made by the client, and what kind of information will be returned from the server. Thus any XML that is
transferred between clients and servers could be based on one out of two different kinds of XML formats,
namely

The schema of a UML model (its classes, structural and behavioural properties, etc)
Information on object instances of this schema, and their relationships and properties

Client requests may then correspond to methods on various UML classes, and the information returned will be
information on a particular set of objects instantiated from particular classes in the UML model. An important
benefit of this is that regardiess of which model changes and extensions are later made, e.g. in a healthcare
record specification, the foundation for the common understanding necessary between a client and a server will
remain the same, and the infrastructure for client-server communication will remain unchanged. Application
developers will aso be presented with object models and object interfaces that all adhere to certain commonly
agreed UML conventions, and which only differ regarding which UML model they apply to. That is, different
sub-systems and sub-models of an overall information system will be defined by different UML models to
avoid a single, huge and unmanageable model.

I nfor mation Presentation

XML in combination with XSL makes it possible to provide many different kinds of presentations of the same
XML formatted information. For example, the same XML string can be presented as WML in the WML
browser of a mobile phone, as one kind of HTML in Netscape, as a dlightly different HTML in Internet
Explorer, as computer generated speech for a blind person, and so on.

However, particularly for very generic data structures like the Synapses healthcare record specification, and
correspondingly SynExML formatted XML, then it is a very time-consuming and demanding task to produce
high quality XSL specifications. Thus we believe that for healthcare record systems then XSL may well be
used for certain ad-hoc, on-the-fly presentations, but most of the information presentation should be performed
more "traditionaly"; e.g. as with the Visual C++ presentation module in the current Oslo Synapses Server
production version.

Record Distribution, Integration and Sharing

The work of WP2 has demonstrated that with state-of-the-art web technology it is relatively simple, technically,
to achieve sharing and integration of distributed electronic patient records.

However, the content of an electronic patient record may be distributed globally, to any number of sites,
and its content is also expected to be available "forever”. The latter implies an important problem and challenge,
aso from a technical perspective, that has not been addressed within SynEx WP2. The remote record links in
Synapses are "hard-coded"” in the sense that they contain a particular webserver address, and in addition enough
information to uniquely identity the relevant record parts on this server. However, over time webservers,
databases, access rights are moved, renamed, changed, etc. Thus a more robust, long-life solution will be
required to assure that distribution targets remain available.

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 42
10. References

1. SynEx Homepage, http://www.gesi.it/synex/

10.
11.
12.
13.
14.
15.

B.Jung, E.P.Andersen, J.Grimson; Using XML for Seamless Integration of Distributed Electronic Patient
Records; the XML 2000 Scandinavia conference; http://www.xml2000.org/program/index.html

Synapses Homepage, http://www.cs.tcd.ie/synapses/public/

P.Hurlen, K.Skifjeld, E.P.Andersen, The Basic Principles of the Synapses Federated Healthcare Record
Server, International Journal of Medical Informatics, Vol. 52, Nr. 1-3, 1998

W.Grimson, D.Berry, J.Grimson, G.Stephens, E.Felton, P.Given, R.O'Moore, Federated Healthcare Record
Server - the Synapses Paradigm, International Journal of Medical Informatics, 1998

World Wide Web Consortium; XML; http://mww.w3.org/ XML
SOAP specification, http://msdn.microsoft.com/xml/general/SOAP_V09.asp

D.Box; A Young Person's Guide to The Smple Object Access Protocol: SOAP Increases | nteroperability
Across Platforms and Languages; http://msdn.microsoft.com/msdnmag/i ssues/0300/soap/soap.asp

Microsoft, SQL Server, http://www.microsoft.com/sql

Microsoft, COM/DCOM, http://www.microsoft.com/com

Microsoft, UDA/OLE DB/ADO, http://www.microsoft.com/data
Microsoft, [|SASP, http://www.microsoft.com/iis

Object Management Group (OMG), UML, http://www.omg.org/uml
Rational Rose, UML Resource Center, http://www.rational.com/uml
Object Management Group (OMG), CORBA, http://www.omg.org/corba

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 43

A. IDL (Interface Definition Language) Specification for Client Components

SynExClient.IDL
Source: /SynExClientl DL/SynExClient.idl

/1 SynExClient.idl : IDL source for SynExCient.dll

/1

/1 This file will be processed by the MDL tool to

/1 produce the type library (SynExClient.tlb) and marshalling code.

i mport "oaidl.idl";
i mport "ocidl.idl";

[
uui d(EFF435BC- 19C1- 11D4- 9639- 0060979B4844) ,

version(1l.0),
hel pstring("SynExCient 1.0 Type Library")

]
|'i brary SYNEXCLI ENTLi b

{
i mportlib("stdol e32.tlb");
i mportlib("stdole2.tlb");

/1 TLib : Mcrosoft XM, version 2.0 : {D63EOCE2- AOA2- 11D0- 9C02- 00CO04FC99C8E}
importlib("msxm.dlI");

/1l Forward decl arations
nterface |sxprvFHCRLOgI n;
nterface | sxprvFHCRI nf ormati on;
nterface |sxprvlnformation;
nterface |sxxm Parser;

nterface | sxxnl FHCRPar ser;
nterface |sxcmanCacheManager;
nterface |sxguiLoginlnfo;
nterface | sxcnanEvent Subscri ption;
nterface |sxout Events;

nterface | sxcshCreat eCachej ects;
nterface | sxcshCacheSearch;
nterface | sxcshSynExl nfo;
nterface |sxcshServer;

nterface | sxcshLogin;

nterface | sxcshRl CShape;
nterface | sxcshRI Cl nformation;
nterface | sxcshRI COperati on;
nterface | sxcshRecor dFol der;
nterface | sxcshFol derRI C;
nterface |sxcshConRlC,

nterface |sxcshVi ewRl C2;
nterface |sxcshbDataRl C;
nterface |sxcshVi ewRl Cl;
nterface | sxcshRl Shape;
nterface |sxcshRl | nformation;
nterface |sxcshRI Operation;
nterface | sxcshRecordltem
nterface |sxcshCollection;

[R I sxpr vFHCRLogi n

obj ect,

uui d(CFBB8611- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,

dual ,

SynEx

WP2 Deliverable D2.1
Seamless Integration of Distributed Electronic Patient Records

SHS-025

24. July, 2000
Ver 1.0- page 44

]

hel pstring("lsxprvFHCRLogi n interface"),
poi nt er _def aul t (uni que)

interface | sxprvFHCRLogin : |Di spatch

{
[id(1), helpstring("Function LogOn")]
HRESULT LogOn([in] BSTR i nAddress,
[in] BSTR i nUser Name,
[in] BSTR i nPassword,
[out,retval] VARI ANT_BOOL* bResult);
[1d(2), helpstring("Function LogOif")]
HRESULT LogOff ([in] BSTR i nAddress,
[in] BSTR inUser Nane,
[out,retval] VARI ANT_BOCL* bResult);
b
[]--eama e - - I sxpr vFHCRI nf or mat i on
[
obj ect,
uui d(CFBB8612- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,
dual ,
hel pstring("lsxprvFHCRI nformation interface"),
poi nt er _def aul t (uni que)
]
interface |sxprvFHCRI nformation : |Dispatch
{

[1d(1), helpstring("Function SetContextlnfo")]

HRESULT Set ContextlInfo([in] |sxcshCreateCacheCbhjects* inRefCache,
[in] long inLoginlD,
[in] long inServerlD);

[id(2), helpstring("Function CacheRecordl nfo")]
HRESULT CacheRecordl nfo([in] BSTR i nAddress,
[in] BSTR i nUser Nane,
[in] BSTR i nRecordl D,
[in] BSTR inRetrieval,
[in, out] VARI ANT_BOOL* bLogi nOK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(3), helpstring("Function CacheFol derlnfo")]
HRESULT CacheFol derlnfo([in] BSTR i nAddress,
[in] BSTR i nUser Nare,
[in] BSTR i nRecordl D,
[in] BSTR i nRCl D,
[in] BSTR inRetrieval,
[in, out] VARI ANT_BOOL* bLogi nOK,
[out,retval] VARI ANT_BOOL* bResult);

[id(4), helpstring("Function CacheDocunent| nfo")]
HRESULT CacheDocurnent | nfo([in] BSTR i nAddress,
[in] BSTR i nUser Nare,
[in] BSTR i nRecordl D,
[in] BSTR i nRCl D,
[in] BSTR inRetrieval,
[in, out] VARI ANT_BOOL* bLogi nOK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(5), helpstring("Function GetRecordlnfo")]

HRESULT Get Recordl nfo([in] BSTR i nAddress,
[in] BSTR i nUser Nare,
[in] BSTR i nRecordl D,
[in] BSTR inRetrieval,

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 45

[in] BSTR i nResponse,

[in, out] BSTR* out Response,

[in, out] VARI ANT_BOOL* blLogi nCK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(6), helpstring("Function GetFol derlnfo")]
HRESULT Get Fol derInfo([in] BSTR i nAddress,
[in] BSTR i nUser Name,
[in] BSTR i nRecordl D,
[in] BSTR inRC D,
[in] BSTR inRetrieval,
[in] BSTR i nResponse,
[in, out] BSTR* out Response,
[in, out] VARI ANT_BOOL* bLogi nCK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(7), helpstring("Function GetDocunent!|nfo")]
HRESULT Get Docunent | nfo([in] BSTR i nAddress,
[in] BSTR i nUser Namne,
[in] BSTR i nRecordl D,
[in] BSTR inRC D,
[in] BSTR inRetrieval,
[in] BSTR i nResponse,
[in, out] BSTR* out Response,
[in, out] VAR ANT_BOOL* blLogi nCK,
[out,retval] VARI ANT_BOOL* bResult);

}
[]-mmm e o - I sxprvl nformation
[.
obj ect,
uui d(CFBB8613- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,
dual ,
hel pstring("Isxprvlinformation interface"),
poi nt er _def aul t (uni que)
]
interface Isxprvinformation : |Dispatch
{
[id(1l), helpstring("Function SetContextlnfo")]
HRESULT Set ContextlInfo([in] |sxcshCreateCachehjects* inRefCache);
[1d(2), helpstring("Function Cachel nformation")]
HRESULT Cachel nformation([out,retval] VAR ANT_BOOL* bResult);
s
[[-eceeeeaaans I sxxm Par ser
[
obj ect,
uui d(CFBB8633- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,
dual ,
hel pstring("lsxxm Parser interface"),
poi nt er _def aul t (uni que)
]
interface | sxxm Parser : |Di spatch

[1d(1), helpstring("Function ParseAndCache")]
HRESULT Par seAndCache([in] | XM.DOVDocurent * i nRef XM_Doc,
[out,retval] VARI ANT_BOOL* bResult);

[1d(2), helpstring("Function SetContextlnfo")]

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 46

]

HRESULT Set ContextlInfo([in] |sxcshCreateCachehjects* inRefCache);

----------- I sxxm FHCRPar ser

obj ect,

uui d(026962B1- 1B71- 11d4- 963B- 0060979B4844) ,
ol eaut omati on,

dual ,

hel pstring("Ilsxxm FHCRPar ser interface"),
poi nt er _def aul t (uni que)

interface |sxxm FHCRParser : |Dispatch

{

]

[id(1), helpstring("Function ParseAndCache")]
HRESULT Par seAndCache([in] | XM.DOVDocunent* i nRef XM.Doc,
[out,retval] VARI ANT_BOOL* bResult);

[1d(2), helpstring("Function SetContextlnfo")]

HRESULT Set ContextInfo([in] IsxcshCreateCacheCbhjects* inRefCache,
[in] long inLoginlD,
[in] BSTR inServerType,
[in] long inServerlD);

----------- I sxcmanCacheManager

obj ect,

uui d(CFBB8634- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,

dual ,

hel pstring("lsxcmanCacheManager interface"),
poi nt er _def aul t (uni que)

i nterface | sxcnmanCacheManager : |Dispatch

{

[propget, id(1), helpstring("property O fLineCatal 0og")]
HRESULT O fLi neCat al og([out, retval] BSTR *pOffLineCatal og);

[propput, id(1), helpstring("property O fLineCatal 0og")]
HRESULT O fLi neCatal og([in] BSTR new(r f Li neCat al og) ;

[propget, id(2), helpstring("property DefaultServer")]
HRESULT Def aul t Server([out, retval] BSTR *pDefaul t Server);

[propput, id(2), helpstring("property DefaultServer")]
HRESULT Def aul t Server ([in] BSTR newDef aul t Server);

[1d(3), helpstring("Function GetCacheCreation")]
HRESULT Get CacheCreation([out,retval] |sxcshCreateCacheOhjects** refCache);

[id(4), helpstring("Function GetCacheSearch")]
HRESULT Get CacheSearch([out,retval] |sxcshCacheSearch** refCache);

[id(5), helpstring("Function Exit")]
HRESULT Exit();

[id(6), helpstring("Function WrkOfline")]
HRESULT Wor kO fl i ne();

[id(7), helpstring("Function WrkOnline")]

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 47

HRESULT Wor kOnl i ne();

[id(8), helpstring("Function IsOnline")]
HRESULT 1sOnline([out,retval] VAR ANT_BOOL* bResult);

[1d(9), helpstring("Function SaveCache")]
HRESULT SaveCache([in] BSTR i nCat al og,
[out,retval] VARI ANT_BOOL* bResult);

[id(10), helpstring("Function LoadCache")]
HRESULT LoadCache([in] BSTR i nCat al og,
[out,retval] VARI ANT_BOOL* bResult);

[id(11), helpstring("Function LoadServerlnfo")]
HRESULT LoadServerlInfo([out,retval] VAR ANT_BOOL* bResult);

[id(12), helpstring("Function LoadSynExl nfo")]
HRESULT LoadSynExI nfo([out,retval] VAR ANT_BOOL* bResult);

[1d(13), helpstring("Function RegisterLogi nGU")]
HRESULT Regi sterLogi nGJl ([in] |sxguiLogi nl nfo* inRefLoginlnfo);

b
N I sxgui Logi nl nfo
[.
obj ect,
uui d(CFBB8635- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,
dual ,
hel pstring("lsxgui Logi nlnfo interface"),
poi nt er _def aul t (uni que)
]
interface |sxguiLogininfo : |ID spatch
{
[id(1), helpstring("Function GetLoginlnformation")]
HRESULT Get Logi ninformation([in] BSTR inServer Nane,
[in, out] BSTR* inoutUserNane,
[in, out] BSTR* out Password,
[out,retval] VARI ANT_BOOL* bResult);
I
R | sxcmanEvent Subscri pti on
[.
obj ect,
uui d(CFBB8616- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,
dual ,
hel pstring("IlsxcmanEvent Subscription interface"),
poi nt er _def aul t (uni que)
]
i nterface | sxcmanEvent Subscription : |Dispatch
{

[id(1l), helpstring("Function Subscribe")]

HRESULT Subscribe([in] |sxoutEvents* inRefReceiver,
[in, out] long* outSubscrlD,
[out,retval] VARI ANT_BOCOL* bResult);

[1d(2), helpstring("Function EndSubscribe")]
HRESULT EndSubscribe([in] |ong inSubscrl D,
[out,retval] VARI ANT_BOOL* bResult);

SynEx
WP2 Ddliverable D2.1

Seamless Integration of Distributed Electronic Patient Records

SHS-025
24. July, 2000
Ver 1.0 - page 48

O I sxout Event s

obj ect,
uui d(CFBB8617- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,
dual ,
hel pstring("lsxout Events interface"),
poi nt er _def aul t (uni que)
]
interface |sxoutEvents : |Dispatch
{
[1d(1), helpstring("Function Notification")]
HRESULT Notification([in] BSTR i nMessage);

[id(2), helpstring("Function SynExl nfoAdded")]
HRESULT SynEx| nf oAdded([in] |sxcshSynExlnfo* inRef SynExl nfo);

[1d(3), helpstring("Function SynExlnfoRenoved")]
HRESULT SynExI nf oRenmoved([in] BSTR i nSynExl nf oNane) ;

[1d(4), helpstring("Function Server Added")]
HRESULT Server Added([in] |sxcshServer* inRefServer);

[1d(5), helpstring("Function ServerRermoved")]
HRESULT Server Rempoved([in] |ong inServerlD,
[in] BSTR inServer Nane) ;

[id(6), helpstring("Function Logi nAdded")]
HRESULT Logi nAdded([in] |sxcshLogi n* inRefLogin);

[1d(7), helpstring("Function Logi nRenoved")]

HRESULT Logi nRenoved([in] |ong inLoginlD,
[in] BSTR inUser Nane,
[in] long inServerlD,
[in] BSTR inServerNane);

[1d(8), helpstring("Function RI CAdded")]
HRESULT RI CAdded([in] IsxcshRI CShape* i nRef Rl CShape);

[1d(9), helpstring("Function Rl CRefreshed")]
HRESULT RI CRefreshed([in] |sxcshRlI CShape* i nRef Rl CShape);

[1d(10), helpstring("Function R CRenpved")]
HRESULT Rl CRenoved([in] |ong inServerlD,
[in] long inLoginlD,
[in] BSTR inRecordl D,
[in] BSTR inRC D,
[in] BSTR inUser Nane,
i

[in] BSTR inServer Nane) ;

N L I sxcshCr eat eCacheObj ect s

obj ect,

uui d(CFBB8618- 19C0- 11d4- 9639- 0060979B4844) ,

ol eaut onati on,

dual ,

hel pstring("lsxcshCreat eCacheOhj ects interface"),
poi nt er _def aul t (uni que)

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 49
i nterface | sxcshCreateCacheCbjects : |Dispatch
{

[id(1l), helpstring("Function |InsertSynExlnfo")]
HRESULT | nsert SynExl nfo([in] BSTR i nNane,
[in] BSTR i nAddress,
[out,retval] VARI ANT_BOCL* bResult);

[1d(2), helpstring("Function InsertServer")]
HRESULT | nsertServer([in] BSTR i nNaneg,
[in] BSTR inType,
[in] BSTR i nAddr ess,
[in] BSTR i nWbl nfo,
[in] BSTR i nO f Li neCat al og,
[out,retval] VARI ANT_BOOL* bResult);

[1d(3), helpstring("Function InsertLogin")]

HRESULT I nsertLogi n([in] BSTR i nUser Nane,
[in] long inServerlD,
[in, out] |ong* outLoginlD,
[out,retval] VARI ANT_BOOL* bResult);

[id(4), helpstring("Function PostRecordCachi ng")]
HRESULT Post RecordCachi ng([in] BSTR i nRecordl D,
[in] BSTR i nRClI D,
[in] long inLoginl D,
[in] long inServerlD,
[in] BSTR inAction,
[out,retval] VARI ANT_BOOL* bResult);

[1d(5), helpstring("Function |InsertRlI CShape")]
HRESULT | nsert Rl CShape([in] |ong inServerl D,
[in] long inLoginlD,

[in] BSTR inRecordl D,

[in] BSTR inRCl D,

[in] BSTR i nSynapsesType,

[in] BSTR i nRI CType,

[in] BSTR inParent RCl D,

[in] BSTR inFirstChil dRCI D,

[in] BSTR inPredRCl D,

[in] BSTR inTarget Server Addr ess,
[in] BSTR inTarget Recordl D,

[in] BSTR i nTarget RCl D,

[out,retval] VARI ANT_BOOL* bResult);

[1d(6), helpstring("Function InsertRecordFolder")]
HRESULT | nsert RecordFol der([in] |ong inServerl D,
[in] long inLoginlD,

[in] BSTR inRecordl D,

[in] BSTR inRCl D,

[in] BSTR i nC assNane,

[in] BSTR inType,

[in] BSTR inLanguage,

[in] BSTR inLogTi ne,

[in] BSTR inLogUserl D,

[in] BSTR inlnvalidationTine,

[in] BSTR inlnvalidationUserl D,
[out,retval] VARI ANT_BOCL* bResult);

[1d(7), helpstring("Function InsertFolderRIC")]
HRESULT | nsert Fol derRIC([in] long inServerlD,
[in] long i
[in] BSTR i nRecordl D,
[in] BSTR i nRCl D,
[in] BSTR inC assNane,
i
i

nLogi nl D,

[in] BSTR inType,
[in] BSTR i nLanguage,

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 50

[in] BSTR inLogTi ne,

[in] BSTR inLogUserl D,

[in] BSTR inlnvalidationTinmne,

[in] BSTR inlnvalidationUserl D,
[out,retval] VARI ANT_BOOL* bResult);

[1d(8), helpstring("Function InsertConRIC")]

HRESULT I nsert ConRI C([in] |
[in] I

i
i
[in] BSTR i
[in] BSTR i
[in] BSTR i
[in] BSTR inType
[in] BSTR i
[in] BSTR i
[in] BSTR i
[in] BSTR i
[in] BSTR

ong
ong

nServer | D,
nLogi nl D,
nRecor dl D,
nRCI D,

nd assNane,

nLanguage,

nLogTi ne,

nLogUser | D,

nl nval i dati onTi ne,
nl nval i dati onUser | D,

[out,retval] VARI ANT_BOOL* bResult);

[id(9), helpstring("Function InsertViewRl C2")]

HRESULT I nsert Vi ewRl C2([i n]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]

| ong
| ong
BSTR

inServerl D,
i nLogi nl D,
i nRecor dl D,
BSTR i nRCI D,
BSTR i nCl assNane,
BSTR i nType,
BSTR i nLanguage,
BSTR i nLogTi e,
BSTR i nLogUser | D,
BSTR i nl nval i dati onTi ne,
BSTR i nl nval i dati onUser | D,

[out,retval] VARI ANT_BOCL* bResult);

[1d(10), hel pstring("Functi

HRESULT | nsertDataRl C([i n]
[in]
[in]
[in]
[in]
[in]

[id(11), hel pstring("Functi
HRESULT I nsert Vi ewRl C1([i n]
[in]

[out

[1d(12), hel pstring("Functi

HRESULT | nsert Rl Shape([in]
[in]
[in]

on InsertDataRl C")]

I ong inServerl D,

I ong i nLogi nl D,

BSTR i nRecor dl D,

BSTR i nRClI D,

BSTR i nCl assNane,

BSTR i nType,

BSTR i nLanguage,

BSTR i nLogTi ne,

BSTR i nLogUser | D,

BSTR i nl nval i dati onTi ne,
BSTR i nl nval i dati onUser | D,
retval] VARI ANT_BOOL* bResult);

on InsertViewRl C1")]
| ong i nServerl D,
| ong i nLogi nl D,
BSTR i nRecordl D,
BSTR i nRCI D,
BSTR i nCl assNane,
BSTR i nType,
BSTR i nLanguage,
BSTR i nLogTi e,
BSTR i nLogUser | D,
BSTR i nl nval i dati onTi ne,
BSTR i nl nval i dati onUser | D,
,retval] VAR ANT_BOOL* bResult);

on I nsertRl Shape")]
I ong i nServerl D,

I ong i nLogi nl D,
BSTR i nRecor dl D,

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 51

in] BSTR
in] BSTR
in] BSTR
in] BSTR inParent,

[nRCl D,

[

[i

[i

[in] BSTR inFirstChild,
i

t

[

nSynapsesType,

i
i
i nRI Type,
i
i
i

in] BSTR inPred,
in] BSTR i nHoneRl C,
out,retval] VARI ANT_BOOL* bResult);

[1d(13), helpstring("Function |InsertRecordltent)]
HRESULT I nsertRecordltem([in] |ong inServerl D,
[in] long inLoginlD,
[in] BSTR inRecordl D,
[in] BSTR inRCl D,
[in] BSTR i nC assNane,
[in] BSTR inVal ue,
[in] BSTR inType,
[in] BSTR i nLanguage,
[in] BSTR inDataType,
[in] BSTR inLogTi ne,
[in] BSTR inLogUserl D,
[in] BSTR inlnvalidationTine,
[in] BSTR inlnvalidationUserlD,
[in] BSTR i nEvent Begi nTi ne,
[in] BSTR i nEvent EndTi ne,
[in] BSTR inC uster,
[in] BSTR inlnternal Dat aType,
[in] BSTR i nFormat,
[out,retval] VARI ANT_BOOL* bResult);
[1d(14), hel pstring("Function GenerateNewRecordl D")]
HRESULT Gener at eNewRecor dl D([out, retval] BSTR* outRecordl D);
b
R R | sxcshCacheSear ch
[.
obj ect,
uui d(CFBB8615- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,
dual ,
hel pstring("lsxcshCacheSearch interface"),
poi nt er _def aul t (uni que)
]
i nterface |IsxcshCacheSearch : |Dispatch
{
[id(1l), helpstring("Function GetCacheManager")]
HRESULT Get CacheManager ([out,retval] |sxcmanCacheManager** ref CacheManager);
[1d(2), helpstring("Function FindAl | SynExlnfos")]
HRESULT Fi ndAl | SynExl nfos([out,retval] |sxcshColl ection** out Ref SynExl nfos);
[1d(3), helpstring("Function FindAl Il Servers")]
HRESULT Fi ndAl | Servers([out,retval] IsxcshCollection** outRefServers);
[id(4), helpstring("Function FindAl Il Logins")]
HRESULT Fi ndAl | Logi ns([out,retval] IsxcshCollection** outRefLogins);
[id(5), helpstring("Function FindServer")]
HRESULT Fi ndServer ([in] long inServerlD,
[out,retval] IsxcshServer** outRef Server);
[1d(6), helpstring("Function FindLogin")]
HRESULT Fi ndLogi n([in] |ong inLoginl D,

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 52

[out,retval] IsxcshLogi n** out RefLogin);

[1d(7), helpstring("Function Fi ndSynExl nfo")]
HRESULT Fi ndSynExI nfo([in] BSTR i nl nf oNamne,
[out,retval] |sxcshSynExl nfo** out Ref SynExI nfo);

[id(8), helpstring("Function Fi ndRI CShape")]
HRESULT Fi ndRI CShape([in] |ong inServerl D,
[in] long inLoginlD,
[in] BSTR inRecordl D,
[in] BSTR inRCl D,
[out,retval] |sxcshRI CShape** out Ref Rl CShape) ;

[1d(9), helpstring("Function FindRecord")]
HRESULT Fi ndRecord([in] |ong inServerlD,
[in] long inLoginlD,
[in] BSTR inRecordl D,
[out,retval] IsxcshRecordFol der** out Ref Recor dFol der);

[1d(10), helpstring("Function FindFol der")]
HRESULT Fi ndFol der ([in] long inServerlD,
[in] long inLoginlD,
[in] BSTR i nRecordl D,
[in] BSTR i nRCI D,
[out,retval] IsxcshFol derRl C** out Ref Fol derRI C);

[id(11), helpstring("Function FindDocunent")]
HRESULT Fi ndDocunent ([in] |ong inServerl D,
[in] long inLoginlD,
[in] BSTR i nRecordl D,
[in] BSTR i nRCI D,
[out,retval] IsxcshConRI C** out Ref ConRI C);

[1d(12), hel pstring("Function Fi ndRI Shape")]
HRESULT Fi ndRI Shape([in] |ong inServerl D,
[in] long inLoginlD,
[in] BSTR i nRecordl D,
[in] BSTR i nRCl D,
[out,retval] IsxcshRI Shape** out Ref Rl Shape);

[1d(13), helpstring("Function FindRecordlteni)]
HRESULT Fi ndRecordltem([in] |ong inServerlD,
[in] long inLoginlD,
[in] BSTR i nRecordl D,
[in] BSTR i nRCI D,
[out,retval] IsxcshRecordltenr* outRefRecordlten);

b

N L I sxcshSynExl nf o

[
obj ect,
uui d(CFBB8619- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,
dual ,
hel pstring("lsxcshSynExl nfo interface"),
poi nt er _def aul t (uni que)

]

interface IsxcshSynExIinfo : |Di spatch

{

[propget, id(1l), helpstring("property Nanme")]
HRESULT Nanme([out, retval] BSTR *pNane);

[propget, id(2), helpstring("property Address")]

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 53

]

HRESULT Address([out, retval] BSTR *pAddress);

[propput, id(2), helpstring("property Address")]
HRESULT Address([in] BSTR newAddress);

----------- | sxcshServer

obj ect,

uui d(CFBB861B- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,

dual ,

hel pstring("lsxcshServer interface"),

poi nt er _def aul t (uni que)

interface | sxcshServer : |Di spatch

{

[propget, id(1), helpstring("property ServerlD")]
HRESULT Server|D([out, retval] |ong *pServerlD);

[propget, id(2), helpstring("property Nanme")]
HRESULT Nanme([out, retval] BSTR *pNane);

[propget, id(3), helpstring("property Type")]
HRESULT Type([out, retval] BSTR *pType);

[propget, id(4), helpstring("property Address")]
HRESULT Address([out, retval] BSTR *pAddress);

[propput, id(4), helpstring("property Address")]
HRESULT Address([in] BSTR newAddress);

[propget, id(5), helpstring("property Weblnfo")]
HRESULT Webl nfo([out, retval] BSTR *pWbl nfo);

[propput, id(5), helpstring("property Weblnfo")]
HRESULT Webl nfo([in] BSTR newwbl nf o) ;

[propget, id(6), helpstring("property O fLineCatal 0g")]
HRESULT O fLi neCatal og([out, retval] BSTR *pOfLineCatal og);

[propput, id(6), helpstring("property O fLineCatal 0g")]
HRESULT OF f Li neCat al og([in] BSTR new(f f Li neCat al 0g) ;

[1d(7), helpstring("Function FindLogin")]
HRESULT Fi ndLogi n([in] BSTR i nUser Nare,
[out,retval] IsxcshLogi n** out Ref Login);

[id(8), helpstring("Function Logins")]
HRESULT Logi ns([out,retval] IsxcshCollection** outReflLogins);

[1d(9), helpstring("Function LogOn")]

HRESULT LogOn([in] BSTR i nUser Nane,
[in] BSTR i nPassword,
[in, out] |ong* outLoginlD,
[out,retval] VARI ANT_BOOL* bResult);

[1d(10), helpstring("Function Delete")]
HRESULT Del ete([out,retval] VARI ANT_BOOL* bResult);

----------- I sxcshLogi n

SynEx
WP2 Ddliverable D2.1

Seamless Integration of Distributed Electronic Patient Records

SHS-025
24. July, 2000
Ver 1.0 - page 54

obj ect,
uui d(CFBB861C- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,
dual ,
hel pstring("lsxcshLogin interface"),
poi nt er _def aul t (uni que)
]
interface IsxcshLogin : |Di spatch
{
[1d(1), helpstring("Function LoginlD")]
HRESULT Logi nl D([out,retval] |ong* outLoginlD);

[1d(2), helpstring("Function UserNane")]
HRESULT User Nane([out,retval] BSTR* out User Nane);

[1d(3), helpstring("Function Server")]
HRESULT Server([out,retval] IsxcshServer** outRefServer);

[1d(4), helpstring("Function RootRICs")]

HRESULT Root RI Cs([out,retval] |sxcshColl ection** out Ref Rl CShapes);

[1d(5), helpstring("Function Refresh")]
HRESULT Refresh([in] BSTR i nPassword,
[out,retval] VARI ANT_BOOL* bResult);

[1d(6), helpstring("Function LogOif")]
HRESULT LogOrf([out,retval] VARI ANT_BOOL* bResult);

[1d(7), helpstring("Function CacheRecordl nfo")]

HRESULT CacheRecordl nfo([in] BSTR i nRecordl D,
[in] BSTR inRetrieval,
[in, out] VARI ANT_BOOL* blLogi nCK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(8), helpstring("Function CacheFol derlnfo")]
HRESULT CacheFol derlnfo([in] BSTR i nRecordl D,
[in] BSTR inRC D,
[in] BSTR inRetrieval,
[in, out] VARI ANT_BOOL* blLogi nCK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(9), helpstring("Function CacheDocunent|nfo")]
HRESULT CacheDocunent | nfo([in] BSTR i nRecordl D,
[in] BSTR inRC D,
[in] BSTR inRetrieval,
[in, out] VAR ANT_BOOL* blLogi nCK,

[out,retval] VARI ANT_BOOL* bResult);

[1d(10), hel pstring("Function GetRecordlnfo")]
HRESULT Get Recordlnfo([in] BSTR i nRecordl D,
[in] BSTR inRetrieval,
[in] BSTR i nResponse,
[in, out] BSTR* out Response,
[in, out] VARI ANT_BOOL* bLogi nOK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(11), hel pstring("Function GetFol derlnfo")]
HRESULT Get Fol derinfo([in] BSTR i nRecordl D,
[in] BSTR i nRCl D,
[in] BSTR inRetrieval,
[in] BSTR i nResponse,
[in, out] BSTR* out Response,
[in, out] VARI ANT_BOOL* bLogi nOK,

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 55

]

[out,retval] VARI ANT_BOOL* bResult);

[1d(12), helpstring("Function GetDocunent| nfo")]
HRESULT Get Docunent | nfo([in] BSTR i nRecordl D,
[in] BSTR i nRCl D,
[in] BSTR inRetrieval,
[in] BSTR i nResponse,
[in, out] BSTR* out Response,
[in, out] VARI ANT_BOOL* bLogi nOK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(13), helpstring("Function TransfornmXMwi t hXSL")]

HRESULT Transfor nXM.wi t hXSL([in] BSTR i nXM.Stri ng,
[in] BSTR i nXSLAddr ess,
[in, out] BSTR* out ResultString,
[out,retval] VARI ANT_BOOL* bResult);

........... I sxcshRI CShape

obj ect,

uui d(CFBB861D- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,

dual ,

hel pstring("IsxcshRl CShape interface"),

poi nt er _def aul t (uni que)

interface |sxcshRI CShape : |Dispatch

{

[id(1), helpstring("Function ServerlD")]
HRESULT Server|D([out,retval] |ong* outServerlD);

[1d(2), helpstring("Function LoginlD")]
HRESULT Logi nl D([out,retval] |ong* outLoginlD);

[1d(3), helpstring("Function RecordlD")]
HRESULT Recordl D([out,retval] BSTR* outRecordl D);

[id(4), helpstring("Function RCID")]
HRESULT RCI D([out,retval] BSTR* out RClID);

[1d(5), helpstring("Function SynapsesType")]
HRESULT SynapsesType([out,retval] BSTR* out SynapsesType);

[1d(6), helpstring("Function RICType")]
HRESULT RI CType([out,retval] BSTR* out Rl CType);

[1d(7), helpstring("Function Login")]
HRESULT Logi n([out,retval] |sxcshLogi n** out Ref Login);

[1d(8), helpstring("Function Server")]
HRESULT Server([out,retval] |sxcshServer** outRefServer);

[1d(9), helpstring("Function Parent")]
HRESULT GoParent ([out,retval] VAR ANT_BOOL* bResult);

[1d(10), helpstring("Function FirstChild")]
HRESULT GoFirstChild([out,retval] VAR ANT_BOOL* bResult);

[1d(11), helpstring("Function Succ")]
HRESULT GoSucc([out,retval] VARI ANT_BOOL* bResult);

[1d(12), helpstring("Function Pred")]

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 56

]

HRESULT GoPred([out,retval] VARI ANT_BOCL* bResult);

[1d(13), helpstring("Function Recordltens")]
HRESULT Recordltenms([out,retval] |sxcshCollection** out Ref Recordltens);

[1d(14), helpstring("Function Sources")]
HRESULT Sources([out,retval] IsxcshCollection** out Ref Sources);

[1d(15), helpstring("Function Target")]
HRESULT Target([out,retval] |sxcshRI CShape** out Ref Target);

[1d(16), hel pstring("Function Cone")]
HRESULT Cl one([out,retval] |sxcshRl CShape** out Rl CShape);

----------- | sxcshRI Cl nf or mat i on

obj ect,

uui d(CFBB861E- 19C0- 11d4- 9639- 0060979B4844) ,

ol eaut omati on,

dual ,

hel pstring("IsxcshRI Clnformation interface"),
poi nt er _def aul t (uni que)

interface IsxcshRI Clnformation : |Dispatch

{

[id(1), helpstring("Function ServerlD")]
HRESULT Server|D([out,retval] |ong* out ServerlD);

[id(2), helpstring("Function LoginlD")]
HRESULT Logi nl D([out,retval] |ong* outLoginlD);

[1d(3), helpstring("Function RecordlD")]
HRESULT Recordl D([out,retval] BSTR* outRecordl D);

[id(4), helpstring("Function RCID")]
HRESULT RCI D([out,retval] BSTR* outRCID);

[1d(5), helpstring("Function C assNane")]
HRESULT Cl assNane([out,retval] BSTR* out Cl assNane);

[id(6), helpstring("Function Type")]
HRESULT Type([out,retval] BSTR* out Type);

[1d(7), helpstring("Function Language")]
HRESULT Language([out,retval] BSTR* out Language);

[1d(8), helpstring("Function LogTine")]
HRESULT LogTi me([out,retval] BSTR* outLogTi ne);

[1d(9), helpstring("Function LogUserlD")]
HRESULT LogUser| D([out,retval] BSTR* outlLogUserlD);

[1d(10), helpstring("Function InvalidationTinme")]
HRESULT | nval i dationTi ne([out,retval] BSTR* outlnvalidationTine);

[1d(11), helpstring("Function InvalidationUserlD")]
HRESULT I nval i dationUserl D([out,retval] BSTR* outlnvalidationUserlD);

----------- I sxcshRI COper at i on

SynEx

SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 57

]

obj ect,

uui d(CFBB8621- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,

dual ,

hel pstring("IsxcshRI COperation interface"),
poi nt er _def aul t (uni que)

interface |IsxcshRI COperation : IDi spatch // preferably - : 1sxcshRI Clnfornmation

{

]

[1d(13), helpstring("Function Save")]

HRESULT Save([in] BSTR inRetrieval,
[in] BSTR i nResponse,
[in, out] VARI ANT_BOOL* bLogi nCK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(14), helpstring("Function Refresh")]
HRESULT Refresh([in, out] VAR ANT_BOOL* bLogi nCK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(15), helpstring("Function Delete")]
HRESULT Del ete([out,retval] VARI ANT_BOOL* bResult);

------------ | sxcshRecor dFol der

obj ect,

uui d(CFBB861F- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,

dual ,

hel pstring("lsxcshRecor dFol der interface"),
poi nt er _def aul t (uni que)

interface | sxcshRecordFolder : IDi spatch // preferably - : IsxcshR COperation

{

]

[1d(16), helpstring("Function GetPresentation")]
HRESULT Get Presentation([out,retval] BSTR* outFil eNane);

[1d(17), helpstring("Function SetPresentation")]
HRESULT Set Presentation([in] BSTR inFil eNane,
[out,retval] VARI ANT_BOOL* bResult);

------------ | sxcshFol derRI C

obj ect,

uui d(CFBB8620- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,

dual ,

hel pstring("lsxcshFol derRI C interface"),

poi nt er _def aul t (uni que)

interface IsxcshFolderRIC : ID spatch // preferably - : IsxcshRI COperation

{

[1d(16), helpstring("Function GetPresentation")]
HRESULT Get Presentation([out,retval] BSTR* outFil eNane);

[1d(17), helpstring("Function SetPresentation")]
HRESULT Set Presentation([in] BSTR inFil eNane,
[out,retval] VARI ANT_BOCOL* bResult);

SynEx

SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 58

]

____________ I sxcshConRI C

obj ect,

uui d(CFBB8622- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,

dual ,

hel pstring("lsxcshConRI C interface"),

poi nt er _def aul t (uni que)

interface IsxcshConRIC : |IDispatch // preferably - : |sxcshRI COperation

{

]

[1d(16), helpstring("Function GetPresentation")]
HRESULT Get Presentation([out,retval] BSTR* outFil eNane);

[1d(17), helpstring("Function SetPresentation")]
HRESULT Set Presentation([in] BSTR inFil eNane,
[out,retval] VARI ANT_BOOL* bResult);

[1d(18), helpstring("Function CacheContent")]
HRESULT CacheContent ([in, out] VARI ANT_BOOL* bLogi nOK,
[out,retval] VARI ANT_BOOL* bResult);

[1d(19), helpstring("Function GetAttributes")]
HRESULT GetAttributes([in] BSTR i nCl assNane,
[out,retval] IsxcshCollection** outRef Recordltens);

------------ | sxcshVi ewRl C2

obj ect,

uui d(CFBB8623- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,

dual ,

hel pstring("lsxcshVviewRl C2 interface"),

poi nt er _def aul t (uni que)

interface IsxcshViewRIC2 : IDi spatch [/ preferably - : IsxcshRIClnformation

{

[1d(16), hel pstring("Function TargetServerlD")]
HRESULT Target Server| D([out, retval] |ong* outTarget ServerlD);

[1d(17), hel pstring("Function TargetRecordl D")]
HRESULT Target Recordl D([out, retval] BSTR* out Target Recordl D);

[1d(18), helpstring("Function TargetRCID")]
HRESULT Target RCI D([out, retval] BSTR* out Target RCID);

[1d(19), helpstring("Function Target Server")]
HRESULT Target Server ([out,retval] |sxcshServer** out Ref Server);

[1d(20), helpstring("Function CacheTarget")]

HRESULT CacheTarget ([in, out] VARI ANT_BOOL* bLogi nCK,
[out,retval] VARI ANT_BOOL* bResult);

............ | sxcshDat aRI C

SynEx

SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 59

]
i
{
} .

1
I
{
}

]

uui d(CFBB8624- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,

dual ,

hel pstring("lsxcshDataRlI C i nterface"),

poi nter _

obj ect,

def aul t (uni que)

nterface | sxcshDataRIC : | Dispatch // preferably - : |sxcshRI Clnformation

-- |IsxcshVi ewRl C1

uui d(CFBB8625- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,

dual ,

hel pstring("IsxcshViewRl Cl interface"),

poi nter _

obj ect,

def aul t (uni que)

nterface IsxcshViewRIClL : IDi spatch // preferably - : IsxcshRIClnformation

-- | sxcshRI Shape

uui d(CFBB8626- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut omati on,

dual ,

hel pstring("IsxcshRlI Shape interface"),

poi nter _

def aul t (uni que)

interface |sxcshRl Shape : |Dispatch

{

[id(1),
HRESULT

[id(2),
HRESULT

[id(3),
HRESULT

[id(4),
HRESULT

[id(5),
HRESULT

[id(6),
HRESULT

[id(7),
HRESULT

[id(8),
HRESULT

[id(9),
HRESULT

hel pstring("Function ServerlD")]
Serverl D([out,retval] |ong* outServerlD);

hel pstring("Function LoginlD")]
Logi nI D([out,retval] |ong* outLoginlD);

hel pstring("Function Recordl D")]
Recordl D([out,retval] BSTR* outRecordl D);

hel pstring("Function RCID")]
RCI D([out,retval] BSTR* outRCID);

hel pstring("Function SynapsesType")]
SynapsesType([out,retval] BSTR* out SynapsesType);

hel pstring("Function Parent")]
GoParent ([out, retval] VAR ANT_BOCL* bResult);

hel pstring("Function FirstChild")]
GoFirstChild([out,retval] VARI ANT_BOOL* bResult);

hel pstring("Function Succ")]
GoSucc([out,retval] VAR ANT_BOOL* bResult);

hel pstring("Function Pred")]
GoPred([out,retval] VAR ANT_BOOL* bResult);

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 60

[id(10), hel pstring("Function HomeRIC")]
HRESULT HomeRI C([out,retval] |sxcshRI CShape** out Ref HoneRI C);

[1d(11), hel pstring("Function C one")]
HRESULT Cl one([out,retval] |sxcshRl Shape** out Rl Shape);

I

A | sxcshRI | nformation

[
obj ect,
uui d(CFBB8627- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,
dual ,
hel pstring("lsxcshRl I nformation interface"),
poi nt er _def aul t (uni que)

]

interface IsxcshRiInformation : |Di spatch

{

[1d(1), helpstring("Function ServerlD")]
HRESULT Server|D([out,retval] |ong* outServerlD);

[id(2), helpstring("Function LoginlD")]
HRESULT Logi nl D([out,retval] |ong* outLoginlD);

[1d(3), helpstring("Function RecordlD")]
HRESULT Recordl D([out, retval] BSTR* out RecordlD);

[id(4), helpstring("Function RCID")]
HRESULT RCID([out, retval] BSTR* outRCID);

[1d(5), helpstring("Function C assNane")]
HRESULT Cl assNane([out, retval] BSTR* out Cl assNane);

[1d(6), helpstring("Function Value")]
HRESULT Val ue([out, retval] BSTR* out Val ue);

[id(7), helpstring("Function Type")]
HRESULT Type([out, retval] BSTR* out Type);

[1d(8), helpstring("Function LogTine")]
HRESULT LogTi me([out, retval] BSTR* outLogTi ne);

[1d(9), helpstring("Function LogUserlD")]
HRESULT LogUser| D([out, retval] BSTR* outlLogUserlD);

[id(210), helpstring("Function InvalidationTine")]
HRESULT I nvalidationTi me([out, retval] BSTR* outlnvalidationTine);

[1d(11), helpstring("Function InvalidationUserlD")]
HRESULT I nvalidationUserl D([out, retval] BSTR* outlnvalidationUserlD);

[id(12), helpstring("Function EventBeginTi me")]
HRESULT Event Begi nTi me([out, retval] BSTR* out Event Begi nTi ne);

[id(213), helpstring("Function Event EndTi me")]
HRESULT Event EndTi ne([out, retval] BSTR* out Event EndTi ne);

[1d(14), helpstring("Function Cluster")]
HRESULT Cluster([out, retval] BSTR* outd uster);

[1d(15), hel pstring("Function |Internal DataType")]
HRESULT I nternal Dat aType([out, retval] BSTR* outl nternal Dat aType);

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 61

[id(16), helpstring("Function Format")]
HRESULT Fornmat([out, retval] BSTR* out Format);

I
[]--eamea e - - I sxcshRI Qper ati on
[
obj ect,
uui d(CFBB8628- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,
dual ,
hel pstring("lsxcshRl Operation interface"),
poi nt er _def aul t (uni que)
]
interface |IsxcshRl Operation : |ID spatch // preferably - : IsxcshRIInformation
{
I
R | sxcshRecordl tem
[
obj ect,
uui d(CFBB8632- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,
dual ,
hel pstring("lsxcshRecordlteminterface"),
poi nt er _def aul t (uni que)
]
interface |IsxcshRecordltem: |Dispatch // preferably - : |sxcshRI Operation
{
I
A | sxcshCol | ection
[
obj ect,
uui d(CFBB8629- 19C0- 11d4- 9639- 0060979B4844) ,
ol eaut onati on,
dual ,
hel pstring("lsxcshCol | ection interface"),
poi nt er _def aul t (uni que)
]
interface IsxcshCollection : |Dispatch
{

[1d(1), helpstring("Function MwveFirst")]
HRESULT MoveFirst([out, retval] VARI ANT_BOCL* bResult);

[1d(2), helpstring("Function MoveNext")]
HRESULT MoveNext ([out, retval] VAR ANT_BOOL* bResult);

/1 1f collection would be encapsul ated VB Col |l ection
/1 [id(1), helpstring("Function Iteni)]

/] HRESULT Item([in] |ong idx,

I [out, retval] ID spatch** ppunk);

/1 [id(2), helpstring("Function Count")]
/1 HRESULT Count ([out, retval] |ong* pi4);

[l [propget, id(3), helpstring("property NewEnuni)]
/1 HRESULT NewEnun([out, retval] |Di spatch** ppunk);

[/ [id(4), helpstring("Function Add")]

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 62

/1 HRESULT Add([in] VARIANT* |tem

I [in, optional] VAR ANT* Key,

I [in, optional] VARI ANT* Before,
I [in, optional] VAR ANT* After);
11

/1 [id(5), helpstring("Function MyveNext")]
/] HRESULT Renove([in] VARI ANT* |ndex);

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 63

B. Web Server Access

Client Requests
The following XML DTD defines the client request format that is expected by the WP2 platform:

<l-- XM. DTD for requests accepted by the Csl o Synapses Server -->
<! ELEMENT OSSrequest (Function+) >

<l ELEMENT Function (Arg*) >
<I ATTLI ST Function Name CDATA #REQUI RED>

<! ELEMENT Arg (#PCDATA) >
<IATTLIST Arg Nane CDATA #REQUI RED>

Notice: The current implementation of the WP2 platform complies with SOAP technically by using XML over
http, but it does not comply with the SOAP protocol with respect to the SOAP XML DTD for client
requests.

No vadidation will be performed against this DTD when parsing it on the server side (if invalid then a more
informative error message will be returned to the client), but the DTD will be available on WP2 web-serversin
afile named "oss-client-request.dtd”.

The following is a list of functions currently supported. Notice that arguments in bold (Arg) indicates
mandatory arguments, and in those cases where there is a predefined set of alternative argument values then
the value in bold indicates the default value if this argument is not provided.

<Function Nane="LogOn">
<Arg Name="User">....</Arg>
<Arg Name="Password">....</Arg>
<Arg Name="ResponseType">..{htm | xm | wi}..</ Arg>
</ Functi on>

<Function Nane="LogCOff" >
<Arg Name="User">....</Arg>
</ Functi on>

<Function Nane="Recordl nfo">
<Arg Name="User">....</Arg>
<Arg Name="RecordI D'>....</Arg>
<Arg Name="Retrieval ">. .{shape | all}..</Arg>
<Arg Name="ResponseType">..{htm | xm | wr}..</Arg>
</ Functi on>

<Functi on Nane="Fol der | nfo">
<Arg Name="User">....</Arg>
<Arg Name="RecordI D'>....</Arg>
<Arg Name="RCID'>....</Arg>
<Arg Name="Retrieval "> .{shape | all}..</Arg>
<Arg Name="ResponseType">..{htm | xm | wi}..</Arg>
</ Functi on>

<Functi on Nanme="Docunent | nfo">
<Arg Name="User">....</Arg>
<Arg Name="RecordI D'>....</Arg>
<Arg Name="RCID'>....</Arg>
<Arg Name="Retrieval">. .{shape | all}..</Arg>
<Arg Name="ResponseType">..{htm | xm | wn}..</ Arg>
</ Functi on>

The "ResponseType" argument is explained below (the two defaults are due to this being client browser
dependent).

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ver 1.0 - page 64

The "Retrieval” argument can be either "shape" or "all”. "Shape" means that only the structure of a record,
folder or document will be returned, not information within a document (no RIC's within a ComRIC except the
ComRIC itsdlf, in Synapses terms).

The reason why the user name must be provided with each request is that a particular client accessing the
information can be logged on to the same server as several users during the same session. In a later version a
default (the most recent logon) will be provided for this argument since in most cases a client will be logged on
asasingle user for the duration of a session.

According to the DTD, several functions can be combined into a single request, e.g. the following request:

<CSSr equest >
<Function Nane="LogOn">
<Arg Nane="User " >onor dmann</ Ar g>
<Arg Nane="Passwor d">xyz</ Arg>
<Arg Nanme="ResponseType" >xnl </ Ar g>
</ Functi on>
<Function Nane="Recordl nfo">
<Arg Nanme="User " >onor dmann</ Ar g>
<Arg Name="Recor dl D'>93003449</ Ar g>
<Arg Name="Retrieval ">al | </ Arg>
</ Functi on>
</ CSSr equest >

but notice that (in the current implementation) results will only be provided to the client for the last of the
functions in the request. Thus there is no use in combining several record/folder/document requests.

Sending Client Requests

The current implementation of the WP2 platform supports three different aternatives for sending a request
from a client to the web server. Two of them for "production” use, and one only for simple "demonstration"”
purposes.

1. QueryString - http GET command

The http GET command, as a socalled QueryString, means that the XML formatted request from the
client is added to the web address as follows:
http://citroen.nr.no/ synexdeno/ 0ss. asp?<0SSr equest ><Functi on Nanme="LogOn" >

<Arg Name="User">adm n</ Ar g><Arg Name="Passwor d" >x</ Ar g>
<Arg Nanme="ResponseType">xnm </ Ar g></ Funct i on></ OSSr equest >

This can be useful for demonstration purposes to make things explicit, but there are also severa
disadvantages; e.g. there is alimit to the length of GET commands so parts of it may be truncated, and the
requests will be visible to "anyone” (e.g. in logs).

2. HTML Forms - http POST command

Using an HTML Form to send a POST command is a better solution than the above GET command.
There are no (at least practically important) limitations to the length of the XML request within a POST
command. The following is an example of making such a request:

<FORM METHOD=" POST" ACTI ON="http://citroen. nr.no/ synexdeno/ oss2. asp" >
<I NPUT TYPE="hi dden" NAME="XM.Request"
VALUE="' <OSSr equest ><Functi on Nanme="LogOn">
<Arg Name="User">em | </ Arg>
<Arg Nanme="Passwor d" >x</ Ar g>
<Arg Name="ResponseType" >xm </ Ar g>
</ Funct i on></ CSSr equest >' / >
<I NPUT TYPE="subm t" VALUE="Log On"/>
</ FORMW>

Notice: The name of the input/form field with the XML formatted request must be "XMLRequest" to be
accepted/found by the current WP2 implementation.

3. XMLHttpRequest ActiveX control - http POST command

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 65

A http POST command can aternatively be sent by using an ActiveX control like XMLHttpRequest,
which is available within the Micrsoft XML v.2.0 parser "msxml.dll". The following is an example of how
to use this control from Visua Basic:

DmrefHtp As MSXM.. XMLHTTPRequest
Di m r ef XM_Doc As MSXM.. DOVDocumnent

Di m strServer Address As String

Di m str XM.r equest As String

strServer Address = "http://citroen.nr.no/ synexdeno/ oss. asp”

str XM.request = "<OSSrequest ><Functi on Nane=" & Chr(34) & "LogOn" & Chr(34) & _
"><Arg Name=" & Chr(34) & "User" & Chr(34) & _
">adm n</ Arg><Arg Nane=" & Chr(34) & "Password" & Chr(34) & _
">x</ Arg><Arg Nane=" & Chr(34) & "ResponseType" & Chr(34) & _
">xm </ Ar g></ Funct i on></ OSSr equest >"

Set refH tp = New MSXM.. XMLHTTPRequest
Call refHttp. Open("POST", strServerAddress, Fal se)

NB! To distinguish this POST command from the Forms POST conmand
Call refHttp. Set Request Header (" XM_Request™, "XM.HttpRequest")

Set ref XM_.Doc = New MSXM.. DOMDocument

ref XM_Doc. Async = Fal se

ref XM_Doc. Val i dat eOnPar se = Fal se

If (Not ref XM.Doc.LoadXM_(strXM.request)) Then
...error in XM request...

End |f

Call refHttp. Send(ref XM.Doc)

...result available in refH tp.responseXM

Notice: To be able to distinguish this POST command from the other Forms POST command, a request
header variable named "XMLRequest" is defined with the value "XMLHttpRequest". Without this
variable defined and set, a WP2 server will not be able to get the XML request sent.

The SynEXx client uses the XMLHttpRequest component in its implementation.

SYynEXML Server Response

The server response to a valid request for record, folder or document information will be XML valid according
to the SynExXML, which again is based on the generic FHCR structure defined by the Synapses Server
specification [3][4]. That is, such XML, and including a reference to a default XSL specification, will be
returned to the client provided that either the client makes an explicit request for "xml" via the "ResponseType"
argument, or no "ResponseType" argument is provided and the client browser is Internet Explorer v.5.0.

If the client specifies "html" for the "ResponseType" argument, or no "ResponseType’ argument is
provided and the client uses any other browser than Internet Explorer v.5.0, then the XML generated for the
information requested will be transformed into HTML on the server-side via the use of an XSL specification.

Of course, requesting HTML instead of XML is only relevant in those cases where the client only wants to
browse the information received, and the browser is unable to transform XML into e.g. HTML via XSL; either
the default XSL provided from the server, or some other X SL that the client has access to.

WML formatted information is not available in the current version.

Other Server Responses

Notice that the server does not respond with XML valid according to SynExML for LogOn and LogOff
reguests, nor if an error occurs when processing a request (e.g. trying to retrieve information without being
logged on, or information for which the user lacks authorization).

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 66

The following DTD defines aternative server responses for a successful LogOn, a successful LogOff, or an
error situation:

<I-- XM. DTD for non-SynExM. responses returned by the Osl o Synapses Server -->
<! ELEMENT OSSresponse (Success | Failure)* >

<! ELEMENT Success (Function)>
<! ELEMENT Functi on (#PCDATA) >

<! ELEMENT Failure (Error*) >

<!l ELEMENT Error (Source, Nunber, Description)>
<! ELEMENT Sour ce (#PCDATA) >

<! ELEMENT Nunber (#PCDATA) >

<! ELEMENT Descri ption (#PCDATA) >

This DTD will be available on WP2 web-servers in afile named " oss-server-response.dtd”.

SynEx SHS-025
WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 67

C. SynExML DTD (Document Type Definition)

<l-- -->
<l-- Name: SynExM -->
<l-- Version: 2.1 beta 4 -->
<I-- Dat e: 04/ 02/ 2000 -->
<I-- Copyright: SynEx -->
<l-- -->
<l-- Editor: -->
<I-- Benj ami n JUNG (TCD, <benjam n.jung@s.tcd.ie>) -->
<l-- -->
<l-- Contributing editor: -->
<I-- Tony AUSTIN (UCL, <t.austin@hine.ucl.ac.uk>) -->
<l-- -->
<I-- Contri buting authors: -->
<I-- Jose ANDANY (HUG, <jose.andany@li m hcuge. ch>) -->
<I-- Egi| P. ANDERSEN (SHS, <egil.paulin.andersen@r. no>) -->
<I-- St ephane SPAHNI (HUG <st ephane. spahni @i m hcuge. ch>) -->
<l-- Yigang XU (Broussais, <xu@broussais.fr>) -->
<I-- VI adi mir YURPALOV (I BEX, <vdy@ bex.ch>) -->
<I-- Andrei EMELI ANENKO (| BEX, <ave@ bex. ch>) -->
<I-- Di pak KALRA (UCL, <d.kalra@hine.ucl.ac.uk>) -->
<l-- -->
<l-- -->
<l-- GENERAL COMVENTS -
<l-- It is recommended to use the SO Date/Time format to -->
<I-- express Times and Dates in ELEMENT content and -->
<I-- ATTRI BUTE val ues. -->
<l-- -->
<l-- -->
<I-- % RICattributes -->
<l-- Attributes commmon to every RIC in the Synapses Server -->
<I-- specification; i.e., attributes defined in class -->
<l-- Record Conponent and class RIC in the Synapses Cbject -->
<I-- Vi ew. -->
<l-- -->
<I-- Class RICinherits class Record Conponent in the -->
<l-- Synapses Server specification. -->
<l-- -->
<l-- Record Conponent is the root class in the Synapses -->
<l-- oj ect View. The Cbject View contains the classes -->
<l-- from whi ch objects constituting actual healthcare -->
<I-- records are instantiated. The Synapses C ass View -->
<l-- contains classes from which objects constituting -->
<I-- heal thcare record cl asses are instantiated -->
<l-- -->
<IENTITY % Rl Cattributes "C assNanme CDATA #REQUI RED
RCI D ID #REQUI RED
Recordl D CDATA #| MPLI ED
LogUser| D CDATA #| MPLI ED
LogTi me CDATA #| MPLI ED

I nval i dati onUser| D CDATA #| MPLI ED
I nval i dati onTi ne CDATA #| MPLI ED' >

<l-- -->
<l-- % RIAttributes -->
<I-- Attributes conmon to every Recordltemin the Synapses -->
<l -- Server specification; i.e., attributes defined in -->
<I-- cl ass Record Component and class Recordltemin the -->
<I-- Synapses Obj ect View. -->
<l-- -->
<I-- Cl ass Recordlteminherits class Record Conponent in -->

<I-- the Synapses Server specification. -->

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 68
<l-- -->
<IENTITY % Rl attributes "C assNanme CDATA #REQUI RED

RCI D ID #REQUI RED

Recor dl D CDATA #1 MPLI ED

LogUser | D CDATA #1 MPLI ED

LogTi me CDATA #1 MPLI ED

I nval i dati onUser | D CDATA #| MPLI ED
I nval i dati onTi nme CDATA #| MPLI ED

Event Begi nTi ne CDATA #1 MPLI ED
Event EndTi ne CDATA #1 MPLI ED" >
<l-- -->
<I-- % CommonRI CAttri butes -->
<I-- ConmonRI CAttri butes are attributes of RIC s that are -->
<I-- not defined in the Synapses specification, but which -->
<I-- all sites agree to add to this DTD. -->
<l-- -->
<I-- The Language attribute is used to specify the |anguage-->
<I-- used for terms within the elenent to which it bel ongs.-->
<l-- -->
<IENTITY % CommonRI CAttri butes "Type CDATA #l MPLI ED
Language CDATA #l MPLIED'>

<l-- -->
<I-- % ComonRI Attri butes -->
<I-- CommonRI Attributes are attributes of Recordltens -->
<I-- that are not defined in the Synapses specification, -->
<I-- but which all sites agree to add to this DTD. -->
<l-- -->
<I-- The Language attribute is used to specify the -->
<I-- | anguage used for terns within the el enent to which -->
<I-- it belongs. -->
<l-- -->
<I-- The DataType attribute is used to specify type of -->
<I-- data value carried by the Recordlitemto which it -->
<I-- bel ongs. -->
<l-- -->
<IENTITY % ConmonRI Attri butes "Type CDATA #l MPLI ED

Language CDATA #| MPLI ED
Dat aType CDATA #| MPLI ED'>

<l-- -->
<I-- SynExM. (SynEx Mar kup Language) -->
<l -- A SynExM. file can contain a set of RecordFol der's, -->
<I-- FolderRIC s and ConRIC s in any sequence. -->
<l-- -->
<I-- Source specifies fromwhere the XML i s produced -->
<l-- -->

<I ELEMENT SynExM. (RecordFol der | FolderRIC | ConRIC)*>
<! ATTLI ST SynExM. Versi on CDATA #REQUI RED
Source CDATA #REQUI RED>

<l-- -->
<l-- RCpr operty -->
<I-- RCproperties are (nane,value) pairs. -->
<I-- They are not part of the Synapses Server -->
<I-- specification, but they are included to support -->
<I-- site-specific attributes. That is, conceptually they -->
<I-- shoul d be considered a site-specific addition to the -->
<I-- ATTLI ST for a particular elenment (e.g. the -->
<I-- RecordFol der), and they are only included as nested -->

<l-- el ements within e.g. RecordFol der for DTD-technical -->

SynEx
WP2 Ddliverable D2.1

Seamless Integration of Distributed Electronic Patient Records

SHS-025
24. July, 2000
Ver 1.0 - page 69

<I-- reasons. For this reason they nust always be the -->
<I-- first elements within the el enent to which they -->
<I-- bel ong (when parsing e.g. RecordFolder its attributes -->
<I-- shoul d be known). -->
<l-- -->
<! ELEMENT RCproperty (#PCDATA) >
<! ATTLI ST RCproperty Name CDATA #REQUI RED>
<l-- -->
<I-- Recor dFol der (a heal thcare record) -->
<I-- In Synapses every healthcare record is rooted in a -->
<I-- si ngl e RecordFol der object, and the structure of a -->
<I-- HCR is seen as a tree-structure of RIC s with -->
<I-- hyperlinks (ViewRl C2's) between them -->
<I-- The el ements that can be nested within a RecordFol der -->
<I-- element is as specified in the Synapses Server -->
<l-- specification; i.e., either a single ViewRIC2, or a -->
<I-- set of ConRIC s and/or FolderRIC s in any sequence. -->
<I-- In Synapses Recordltem s are used to represent data -->
<I-- val ues (as "dynamc attributes") attached to a -->
<I-- particular RIC (a RIC as a structural elenment in a -->
<l -- HCR). Thus beside its RIC children, a RecordFol der -->
<I-- can also contain a set of Recordltenis. -->
<l-- -->
<! ELEMENT Recor dFol der
(RCproperty*,
((ConRIC| FolderRIC | Recordltem* |
(ViewRl C2, Recordltent)))>
<! ATTLI ST Recor dFol der %CommpnRI CAttri but es;
%Rl Cattributes; >
<l-- -->
<I-- Fol derRI C (a heal thcare fol der) -->
<I-- The el ements that can be nested within a FolderRIC -->
<I-- element is as specified in the Synapses Server -->
<I-- specification (the sanme as for a RecordFol der - -->
<I-- RecordFol der is a specialisation of FolderRIC in -->
<I-- Synapses). -->
<l-- -->
<! ELEMENT Fol derRI C
(RCproperty*,
((ConRIC| FolderRIC | Recordltem* |
(ViewRl C2, Recordltent)))>
<! ATTLI ST Fol der Rl C % CommonRI CAttri but es;
%Rl Cattributes; >
<l-- -->
<I-- ConRI C (a heal thcare docunent) -->
<I-- The el ements that can be nested within a ConRIC -->
<I-- element is as specified in the Synapses Server -->
<I-- specification; i.e., a set of DataRICs, ViewRICl's -->
<I-- and/or ViewRIC2's in any sequence. -->
<I-- In addition it can contain a set of Recordltenms -->
<I-- representing data values (as "dynamic attributes") -->
<l-- attached to this ConRIC -->
<l-- -->

<! ELEMENT ConRI C
(RCproperty*,
(DataRIC | ViewRICL | ViewRIC2 | Recordlitem*)>
<! ATTLI ST ConRI C % ConmonRI CAttri but es;
ORI Cattri butes; >

SynEx SHS-025

WP2 Ddliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 70
<l-- -->

<I-- DataRIC (a "field" within a healthcare docunent) -->

<l-- The el enents that can be nested within a DataRI C -->

<I-- element is as specified in the Synapses Server -->

<l -- specification; i.e., a set of nore DataRIC s, >

<I-- ViewRl Cl's and/or ViewRIC2's in any sequence. -->

<l-- In addition it can contain a set of Recordltens -->

<I-- representing data values (as "dynamic attributes") -->

<l-- attached to this DataRI C >

<l-- -->

<! ELEMENT Dat aRI C
(RCproperty*,
(DataRIC | ViewRICL | ViewRIC2 | Recordlitem*)>
<! ATTLI ST Dat aRl C %ComonRI CAttri but es;
ORI Cattributes; >

<l-- -->
<I-- ViewRIC1 (a "conputed field" within a healthcare -->
<I-- docunent) -->
<I-- In Synapses a ViewRICl is sinmlar to a DataRl C except -->
<I-- that its Recordlitems (its data values as "dynamc -->
<I-- attributes") are conputed on demand. -->
<l-- -->

<I ELEMENT Vi ewRlI C1 (RCproperty*, Recordltent)>
<! ATTLI ST Vi ewRl C1 %CommpnRI CAttri butes;
ORI Cattributes;>

<l-- -->
<I-- ViewRl C2 (a hyperlink between RIC s in two healthcare -->
<I-- records) -->
<I-- A ViewRl C2 specifies a link either to another RIC -->
<I-- within the same record, to a RIC within another record-->
<l -- at the sanme server, or to a RC within another record -->
<I-- at anot her server. The Destination el enent specifies -->
<I-- the link target. -->
<l-- -->

<! ELEMENT Vi ewRl C2 (RCproperty*, Destination?, Recordltent)>
<! ATTLI ST Vi ewRl C2 ¥%CommpnRI CAttri but es;
YRl Cattributes; >

<! ELEMENT Desti nati on EMPTY>
<! ATTLI ST Destinati on Server| D CDATA #REQUI RED
Recor dl D CDATA #REQUI RED

RCl D CDATA #REQUI RED>
<I-- -->
<I-- Recordltem -->
<I-- Recordltemis defined within the Synapses Server -->
<I-- specification, but it is not defined with any content -->
<I-- (Dataltem as a specialisation of Recordltem is just -->
<I-- i ncluded as an exanple (page 6 in the conputational -->
<I-- viewpoint)). An inplenmentation of a Synapses Server -->
<I-- is therefore free to define the content of -->
<I-- Recordltem s as suits it best. However, their purpose -->
<I-- are as "dynanmic attributes" to RICs; i.e. RICs -->
<l-- define the structure of HCR while RI's contain the -->
<I-- data values attached to them Therefore, to make -->
<l -- their "value" explicit, a Value elenment is added to -->
<l-- their DTD definition. -->
<l-- To allow for Recordltemlis to define tree-structures -->
<I-- of values, "Recordltent" is added to the DID -->
<I-- speci fication. -->

<I-- As for the RIC s defined above, RCproperty* is only -->

SynEx SHS-025

WP2 Deliverable D2.1 24. July, 2000
Seamless Integration of Distributed Electronic Patient Records Ve 1.0 - page 71
<I-- meant to be used for extending the ATTLIST with -->

<I-- site-specific attributes. -->

<l-- It is recoomended to attach childel enents of -->

<l-- Recordltemin the follow ng order: RCproperty, -->

<l -- El ementltem Linkltem Recordltem #PCDATA It is -->

<I-- al so al so reconmended to keep the #PCDATA in a single -->

<l-- ‘data-island . -->

<l-- -->

<! ELEMENT Recordltem
(#PCDATA | RCproperty | Elenentltem| Linkltem |
Recordltem) *>

<! ATTLI ST Recordltem %ComonRI Attri butes;
ORI attributes; >
<l -- ==== END(]:SynExM_ v.2.1 beta 3 -->

