AN ANALYSIS OF A PRECONDITIONER FOR THE DISCRETIZED
PRESSURE EQUATION ARISING IN RESERVOIR SIMULATION
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Abstract. We analyze the use of fast solvers as preconditioners for the discretized pressure
equation arising in reservoir simulation. Under proper conditions on the permeability functions
and the source term, we show that the number of iterations for the Conjugate Gradient method
is bounded independently of both the lower bound & of the permeability and the discretization
parameter h. Such results are obtained for a special class of self-adjoint second order elliptic problems
with discontinuous coefficients. We also discuss how fast solvers can be utilized in the presence of
non-rectangular domains by applying a domain imbedding procedure. The theoretical results are

illustrated and supplemented by a series of numerical experiments.
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1. Introduction. The purpose of this paper is to analyze the use of fast solvers
as preconditioners for discretized elliptic problems arising in reservoir simulation.

Consider the following prototypical second order elliptic boundary value problem,
(1.1) V-(KVu)=f inQCR",

with Dirichlet boundary conditions. Here K is a given uniformly positive function

defined on Q. For this problem, it is well known that the associated linear system
(1.2) Apun = fn

obtained e.g. by a finite element discretization of (1.1), can be effectively precon-
ditioned by the operator Lj arising from the case of K = 1. In fact, the spectral
condition number of the preconditioned operator is bounded by
_ sup,eq K(2)
infyeq K(z)’
and thus is bounded independently of the mesh parameter h. Since the number
of Conjugate Gradient iterations is of order O(y/k), this shows that Lj is a good
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preconditioner provided that the geometry allows for a fast solver of systems of the

form

(1.3) Lyvn = ga,

and that K(z) has a small variation. The term fast solver will in this paper refer
to any fast solution strategy for the discrete version of the simplified problem (1.3).
If the domain is rectangular, we can apply FFT-based direct solvers. This will be
further discussed below. But fast solvers may also be defined by a multilevel method
applied to (1.3). This allow us to handle more general geometries.

In this paper, we will consider the case of large variations in K and non-rectangular
geometries. Such problems arise in many applications, but our main motivation is
the pressure equation in reservoir simulation. For that model, K typically varies from
10~% — 102 and the geometry of a reservoir can be quite complicated. However, we
will show that the number of CG-iterations can be bounded independently of the
jumps in K. More precisely, we obtain such results for problems with domains that
can be partitioned into subdomains such that the variation of K is relatively small
in each subdomain. Moreover, K is assumed to have a jump discontinuity along the
boundaries of these subdomains. Finally, in the case of a homogeneous Neumann
boundary condition, we will show how fast solvers can be applied for non-rectangular
domains by using a simple domain imbedding procedure.

Preconditioners for the efficient solution of discretized second order elliptic prob-
lems have been extensively studied over the last 15 years. The most popular meth-
ods can roughly be divided into three classes; Domain Decomposition type methods,
Multigrid Methods and Incomplete Factorizations. Reviews and references for these
classes can be found in e.g. Chan and Mathew [15] for domain decomposition meth-
ods, Bramble [6] or Hackbusch [26] for multigrid methods and Axelsson [2], Bruaset
[11] or Chan and Elman [14] for incomplete factorizations.

Also fast solvers are popular preconditioners. The use of such methods in compli-
cated domains requires some sort of domain imbedding procedure. The main idea in
the domain imbedding, also referred to as fictitious domain methods, is to imbed irreg-
ular domains into larger regular domains on which fast solvers are available. Hence, a
fast solver for the problem defined on the regular domain can be used to construct a
preconditioner for the original problem. Such techniques have been studied by several
authors, see for example Astrakhantsev [1], Buzbee et al. [12], Bérgers and Widlund
[5], Dryja [20], Marchuk et al. [29] and Glowinski et al. [25].

It is well known that, under proper conditions on the problem in question, precon-
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ditioners based on domain decomposition, multigrid or domain imbedding methods
may lead to condition numbers of the preconditioned operator independent of the
mesh parameter h. Another important issue is to establish bounds on the number
of iterations independent of the jumps in the coefficient functions. This problem was
studied in [22] by Dryja, Sarkis and Widlund. They showed that if the coarse grid in a
multilevel Schwarz method has grid lines along the jump discontinuities in the coeffi-
cient K, then it is possible to obtain a bound on the condition number independently
of the size of these jumps, see also Dryja [21] and Bramble et al. [9].

In this paper, we will show similar results for conforming finite element methods
as long as fast solvers are available for problems of the form (1.3). More precisely, we
show that the number of CG-iterations is bounded independently of both the mesh
size and the jumps in the coefficient function provided that the source term is zero
in certain regions. The convergence result is derived in a norm that does not depend
on the lower bounds on the coefficient K. The main observation in order to prove
this result is that the CG-iterations stay within a certain subspace spanned by a set
of eigenvectors whose associated eigenvalues are uniformly bounded with respect to
both the mesh size and the variations of the coefficient K. This property follows
from an assumption on the source term f which turns out to be quite realistic in
reservoir simulation. We will also show that proper fast solvers for these problems
can be defined on complicated domains by a domain imbedding approach.

The outline of the paper is as follows. In the next section we define our model
problem along with the necessary assumptions on the physical parameters. There-
after, the necessary notation used throughout this paper is presented together with
the finite element discretization of our model problem. Sections 3 and 4 contain the

theoretical part of this paper and Section 5 contains the numerical experiments.

2. A model problem. The pressure equation arising in reservoir simulation

can be written in the form
(2.1) V-[A(VP - pgVD)] + % —0 inQCR?

see for instance Ewing [23] or Peaceman [31]. Here, P represents the unknown fluid
pressure related to incompressible or steady state flow in a heterogeneous reservoir,
the gravitational constant is given by g, p is the density of the fluid in question and
D is a function representing the depth of the reservoir measured in the direction of
gravity. In this paper, we will assume that g and p are constant over the domain (.
The mobility tensor A represents physical parameters such as the viscosity of the fluid

and the permeability of the reservoir. Finally, the function ¢ in (2.1) models injection
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Fic. 2.1. A prototypical solution domain Q@ with subdomains Q1 and Q5. Here, 25 represents

a low-permeable region with O(8) mobility.

and production wells located inside (2; i.e. source terms.

Oil reservoirs will normally contain low-permeable zones. In these regions the
mobility A is close to zero, and the stiffness matrix obtained from a finite element
discretization of a problem in the form (2.1) will, in general, be badly conditioned.
As mentioned above, this is the case even if the problem is preconditioned with
the Laplace operator or some operator spectrally close to the Laplace operator. In
this section, we define a model problem, representing a class of second order elliptic
problems, for which the preconditioned Conjugate Gradient (CG) method turns out to
be an efficient numerical method. The preconditioned operator is badly conditioned,
but it turns out that the efficiency of the CG-method, applied to this particular
problem, only depends on a bounded subset of the spectrum of the preconditioned
operator.

We assume that the domain (2 is the union of two subdomains ; and Q4 with a
common boundary 0. Here, {25 represents a low-permeable zone with O(§) mobility
and Qy is a region with O(1) mobility. An example of a solution domain of this type

is shown in Figure 2.1. More precisely, Q = Q; U Qs and

Az) forz e

(2.2) As(z) =
0A(z) for z € Qs,

where 0 < § € 1 and A is a O(1) mobility tensor defined throughout Q. A more
precise assumption on A will be stated below.

By putting p = P — pgD we rephrase our model problem in the following form
(2.3) V-(AsVp)+f=0 inQCRR?

where f = q/p. We assume that the boundary 02 is sufficiently smooth and we divide

it into two disjoint segments I'y and T’y such that 02 = 'y UT',. The boundary
4



conditions are then given by

(2.4)

p=0 onTy,

v.-n=0 onl,.

Furthermore, the Darcy velocities are given by

(2.5)

v = —A(;Vp.

Finally we want to state an assumption on the source term f = ¢/p. Since ¢ represents

either injection or production wells, it is reasonable to assume that ¢ = 0 in the area

of low permeability. Hence, we find it reasonable to assume that

(2.6)

f|95=0

throughout this paper. This assumption is vital in obtaining sharp bounds in the

error analysis for the CG-method.

Remarks.

1. Our results are also valid for non-homogeneous boundary conditions but to

obtain a simpler notation, we will only consider the homogeneous case, see

(2.4).

. In the theoretical part of this paper, we assume that there is only one subdo-

main Qs in the domain 2 where the mobility is of order O(§). Of course, in
real-world simulations there can be a number of such subdomains. However,
the analysis presented here can be extended to the case of a finite number of

subdomains Qs, with O(d;) mobility.

. In the theoretical part of the present paper we consider two dimensional

models. However, it should be noted that similar results hold in the case of
three space dimensions. Moreover, at the end of this paper we will present a

numerical experiment for a three dimensional model problem.

. Problems of the form (2.3), (2.4) are discussed in [30] where we are concerned

with convergence of {ps} as § — 0, cf. also [10].

2.1. Notation and discretization. In this paper the L?(f) inner product is

denoted by

(4,¢) = /Q ¥ d,

and the classical Sobolev space H!(Q) is as usual defined as the space of distribu-

tions with square-integrable first derivatives. The appropriate subspace for our model
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problem, due to the boundary condition (2.4), is

VQ={¢€H1(Q); ¢=00an}.

Next, we will assume that the subdomains ; and s have sufficiently smooth
boundaries and that Q@ = Q; UQs, Q1 N Qs = 0 and Q2N Q5 = @. That is, Q; is
contained in © and dist(Qs,0%) > 0. Moreover, it should be noted that 3Q C 9%,
005 C 001 and 00 U 805 = 09)4.

Finally, we will assume that f € L?(2) satisfies (2.6), and that A(z) = (A ;(z))
is a symmetric uniformly positive definite matrix with entries in L>(2). That is

zTA(z)z

2. <
(2.7) 0<m< ]2

<M forall ze€ R?\ {0} and z € 9,

where m and M are finite constants independent of § and x. Here, |z| for z € R?
denotes the Euclidean norm of z.

Clearly, (2.7) implies that our model problem is strictly elliptic for any § > 0,
see for instance Dautray and Lions [17, Ch. II.8]. Hence, if the boundary of Q is
sufficiently smooth, it follows from the Lax-Milgram theorem, see for example Dautray
and Lions [16] or Gilbarg and Trudinger [24], that the following weak formulation of
(2.3), (2.4) has a unique solution: Find p € Vi such that

(2.8) /QVzb -(AsVp) dz = /szb dr for all ¥ € V.

Now we want to define a Ritz-Galerkin discretization of (2.8). To this end, let
{N1,...,N;} be a set of linearly independent functions such that N; € Vo for i =
1,...,q, and define

Va,n = span{Ny,...,N,}.

Here, the subscript h € I, where I is some subset of IR, is used to distinguish the
finite dimensional entities from the corresponding symbols used in the continuous
case. Typically, h is the mesh size for a grid defined on . With this notation at
hand, we define the approximation of (2.8) as follows: Find p, € Vg such that

(29) aé(ph7¢) = (’lﬁ,f) for all ,(p € VQ,hJ

where as(-,-) is the bilinear form defined on Vo x V by

as(p,¥) = /Q V- (AsV) dz.

We need two specific assumptions on Vo . In order to motivate the first as-

sumption for the discrete problems, we start by considering a similar feature in the
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continuous case. To this end, consider the following boundary value problem defined

on Qs: Find u € H'(Q;s) such that u = w € HY/?(895) on 995 and

Vo - (AVu) dr =0 for all v € Hy ().
Qs

Under proper conditions on {24, this problem has an unique solution u that satisfies
lullzr (s < collwllmrrz(a0,)

where ¢ is a constant independent of §, see e.g. Hackbusch [27, Ch. 7.3]. Motivated
by this property, valid in the continuous case, we assume that a similar property holds

in the discrete case. To state the assumption more precisely, we introduce the spaces
VQ(;,h = Spa’n{N1|QJa R quﬁa};
Vﬂl,h = Span{N1|91a ) Nq|91}a

and let T, : H'(Q1) — H'Y/?(89;) denote the trace operator. Since dQ; C 90y we

can introduce the set

Gay,n = {Ta,(¥)|eas; ¥ € Va,,n}-

Then the first assumption is:

A. For every h € I and every w € Gq, p the following problem has a unique solution:
Find up, € Vg, such that up = w on 05 and
(2.10) Vi - (AVup) de =0 for all ¢ € Vo, N H&(Q&)
Qs

Furthermore, there exists a constant ¢; independent of § and h such that

lun s < allwllmyzoa,)-

Under proper conditions on )5, assumption A can be established for various types of
finite element spaces, see Bramble, Pasciak and Schatz [7] and [8].
Next, we will assume that;

B. If ¢ € Vg, .n N Hi(Qs) then the function

@ on Q(s
0 on Ql

P =

belongs to Vo .
This condition makes it possible to extend discrete test functions defined on 5, and
that vanish on 9, to the entire domain §2.
Typically, these assumptions are likely to be satisfied if the interface 92 coincides

with grid-lines of the mesh associated with the finite element space Vq p.
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2.2. Preconditioning. We will now introduce a preconditioner for the discrete
problem (2.9). Roughly speaking, the preconditioner is defined by introducing an aux-
iliary problem of the same type but with § = 1. We will show that this preconditioner
leads to uniform bounds on the number of iterations for the CG-method provided that
condition (2.6) is satisfied. Furthermore, we will show that if (2.6) is violated then
the number of iterations is bounded by as O(Ind~!). Practical applications of this
preconditioner are discussed in Section 4 and Section 5.

Let fn € Vq, denote the L2-projection of f in Vg . Since (fr, ) = (f,) for
all ¢ € Vg it follows that the problem (2.9) is equivalent to the following problem:
Find pp € Vo, such that

(211) Aé,hph = fh-

Here A, : Vo, — Vo, is the linear operator associated with the bilinear form as(-, -)

defined by

(2.12) (As5.np,9) = as(p, ) for all o, € Vo .

Now we define a preconditioner for the linear system (2.11) by introducing the linear

operator My, : Vo p = Vo, determined by a1(:,-), i.e.

(2.13) (Mnp, ) = /Q V- (AVy) dz for all ¢, € Von.

Preconditioning with M}y, we get the system
(2.14) M, As npn = My, fi.

We will discuss below how this preconditioning can be implemented in various cases,

cf. Section 4.

3. Theoretical results. In this section we will study the efficiency of the CG-
method applied to the problem (2.14). The main idea of the analysis is to utilize a
certain invariance property of the operator M, 1A5,h: There is a subspace of Vo p,
containing the solution pj of (2.11), such that if the start vector p(®) is in the sub-
space, then all subsequent CG-approximations p(*) also belong to this subspace. By
following the standard argument for the error-bound of the CG-method, we utilize
this invariance property to show that the effective condition number of the operator is
defined by the set of eigenvalues associated with the eigenvectors spanning the invari-
ant subspace. Since these eigenvalues can be bounded within a fixed interval [Ag, 1]

independent of § and h, we get a uniform bound on the number of CG-iterations.
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Furthermore, we will show that the eigenvalues of M, 'A;, satisfy A € {d} U
[Mo, 1], where )¢ is a positive constant independent of § and h. This observation is
used to bound the number of CG-iterations also in cases where the assumption (2.6)
is violated. In this latter case, the bound is weaker and allows a O(In§~1) growth in

the number of iterations.

3.1. Properties of the preconditioner. Consider the linear operator M;IA(;’h :

Va,n = Vo,,, and the inner product

(31) [()07 ’(p] = (Mh907¢) for all (pa'lp € VQ,h-

Let Ss be the set of functions with support in Qs and let S; be its orthogonal com-

plement with respect to the inner product [-, ], i.e.
= {4 € Vau; supp(¥) C O} and S; = Sy

Since S; is closed, it follows that Vg 5 is the direct sum of S5 and Si, Vo,r = S5 ® S1.
The next two lemmas state the properties of the operator M, lAg,h. Recall that
As(z) = dA(z) for all z € Qp, see (2.2). This property of As leads to the following

result:

LEMMA 3.1. Let the linear operators As 1, and My, be defined in (2.12) and (2.13),
respectively. Then
a) M, 'Asnp =3¢ forall p € Ss,
b) M;1A57h¢ €51, foralpesS;.

Proof.

Part a). Let ¢ € S5 be arbitrary. For any ¢ € Vo, it follows from the assump-
tion that supp(p) C Qs and the property (2.2) of As that

(3.2) (As.np, ¥ / V- (AsV)de =46 | V- (AVyp)dz =
Qs
§ [ V- (AV) do = [50,9] = (Madip, ).
Hence, since (3.2) holds for all ¢ € Vi, we conclude that
Asnp = Mpdep,
which proves part a).
Part b). From the definition (2.12) of A; ) and the properties (2.2) and (2.7) of
A it follows that

(Asnz,2) =0=>2=0.
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Now, let ¢ € S; be arbitrary and assume that ® = M, 1A5,h<p € Ss. Consequently,
Mh(I) = Ag’hgo,
and since S; = Sy with respect to the (Mj-,-) inner product we find that

(Aé,h<;07 (P) = (Mh¢’7<P) = 07

which in turn implies that ¢ = 0. Thus, the only element of S; that is mapped by
M, 1A(;,h into Ss is the O-function. Hence, we conclude that M, 1A5,hcp € S; for all
(NS S:. 0

We observed above that § is a multiple eigenvalue of M, 1A5,h. In fact the mul-
tiplicity is given by a = dim(Ss). Next we show that the remaining eigenvalues can

be bounded in an interval [Ag, 1], where A9 > 0 is independent of § and h.

LEMMA 3.2. Ifv € S} is an eigenfunction of Mh_lAg,h with eigenvalue X then
)‘0 S A S 1)

where Ao = m(M + Mcy) ! (see (2.7) and (3.4)), i.e. Ao is a positive constant
independent of § and h. Here, Aspn and My, are the operators defined in (2.12) and
(2.13), respectively.
Proof. Since v € S; = Sy, it follows that v L 1 for every ¢ € S5. That is
(3.3) Vi - (AV) do = / V- (AV) dz =0 for all ¥ € S;.
Qs Q
Let w = Tq,(v)|sq, be the boundary values of v at 9Qs. Then it follows from
assumption B and equation (3.3) that ¥ = v|g, solves the problem; Find ¢ € Vo, »
such that ¥ = w on 9€Qs and
Vip - (AV®) dz =0 for all ¢ € Vo, 1, N Hy (Qs).
Qs

Thus, according to assumption A we have

lollmt@s) < erll Toy (0) la/2(a0,),

and consequently, by a trace inequality, we have

lollm s < el Toy | [[ollm@y)-
Here || Tq, || is bounded independently of § and h, cf. e.g. Hackbusch [27], and we
can apply Poincaré’s inequality to get

(3.4) / |Vo|? dz < 02/ |Vo|? dz,
Qs

Q1
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where c¢; is constant independent of § and h.

Next, M,:lA(;,hv = A\v implies that
(3.5) )\/ Vo - (AVv) dz = / Vo - (AsVv) dz
Q Q

Therefore, from (2.2), (2.7) and (3.4) we get

Jo, Vv - (AsVv) dx m [o |Vv|? dz
A> ! > L
T M [, IVuPdz+ M [ [Vu|?de = M [ [Vu]? dz + Me; [o |Vol? do
T M+ Me, 77

which proves the left inequality in the lemma.
The right inequality follows from (3.5), the property (2.2) of A5 and the assump-
tion that 6 < 1.0

The following Corollary summarizes Lemma 3.1 a) and Lemma 3.2.

COROLLARY 3.3. The eigenvalues of M, ' As 1, are contained in {§}U[No, 1]. Here

Ao s a positive constant independent of § and h, and the eigenvalue & has multiplicity

a = dim(Sy).

3.2. Convergence of the preconditioned Conjugate Gradient method.
Now we are ready to analyze the efficiency of the CG-method applied to (2.14). The
preconditioning is incorporated in the CG-algorithm by applying the inner product
[,-] defined in (3.1). Clearly, by Lemma 3.1 part b), S; is an invariant subspace
for M, 1A57h. This implies that the well-known Krylov subspaces generated in the
CG-method are subspaces of Sy, provided that the initial guess p(®) in the iteration
process satisfies p(® € S;.

Furthermore, from (2.2) and assumption (2.6) we find that the solution py, of (2.9)
satisfies

0 A Vi - (AVpp) de =0 for all ¢ € S;.
s

That is, [, pr] = 0 for all ¢ € S5 and hence
(3.6) Ph € Si.

Having established (3.6) and the invariance property of S, it follows in general,
cf. e.g. Bramble [6] or Stoer and Bulirsch [33], that only the eigenvalues associated
the eigenvectors spanning S; have influence on the number of CG-iterations needed to

solve (2.14). Hence, by applying Lemma 3.2 and following the steps of the standard
11



argument for the error-bound of the CG-method we get an error bound for the CG-

method stated in the usual norm

(3.7) l]las = 1/ (Asnp,7) for ¢ € Vo p.

THEOREM 3.4. Let p'*) be the k’th approximation to the solution py of (2.9) in
the CG-method applied to (2.14). If p© € S; then

k
1—vXo
I =¥ lla; <2 (1222 ln — 5l

where Ay is a constant independent of 6 and h.

From this result it follows immediately that the number of CG-iterations needed
to achieve a given accuracy, measured in the || - |4, norm, is bounded by O(A, Y/ %),
cf. e.g. [2]. Moreover, 0 € S; and hence it is never a problem to find an initial guess
p@ in S;.

As mentioned above, the proof of this theorem is analogous to the standard error

analysis of the CG-method and therefore omitted, see e.g. [6, 33].

A remark on the norm. Clearly the norm || - || 4, defined on Vg ;, depends on
d, cf. (3.7). In particular, as § — 0, As 5 becomes singular and consequently the norm
|| - [|45 is very weak for small values of §. Thus one might fear that small errors in
| - |la; do not necessarily imply a good approximation. This is, however, not the case
for the approximations p(¥) generated by the CG-method. It follows by the invariance
property of S, established above, that p®) —p(®) € S for all k. On this subspace the
norms || -||4; and || - ||4,, defined by putting § = 1 in (3.7), are equivalent. Hence,
we obtain the following result.

COROLLARY 3.5. If the CG-method is applied to (2.14) then the k’th approrima-
tion p'¥) to the solution py, of (2.9) satisfies

k
1—+A
_ () <20(7 VO) _ 0
”ph p ||A1 = 1+m ”ph p ||A17

provided that p(© € Sy. Here, C and Ao are constants independent of § and h.
This result shows that the error is bounded in a norm which does not depend on
0, and is hence stronger than the error estimate obtained in Theorem 3.4.
Proof. Recall that 0 < § < 1, and thus
WlE = [ VoAV do= [ Vo aVe)do+8 [ Vo (AVY) da
1 8
(3.8) < | VY- (AVY)dz+ | V- (AVY) dz = 9%,

Ql QS
12



for all ¢ € Vo .
Let 1 € S1 be arbitrary. Then it follows, as in the proof of Lemma 3.2, that there

exists a constant cs, independent of 6 and h, such that
(3.9) | vePdr<e [ (9o ds,
Qs Ql
see equations (3.3)-(3.4). Now, (2.7) and (3.9) imply that
Wi, = [ V- (v ot [ Vo4V do
1 3

< | Vo AV de+esM [ VoV de
Q0

1951

<[ Vo v do+ M [ V. (AVY) do
(o m Q1

< <1+ C2M) ( Vo - (AVY) dz+6 | V- (AV) d:z:)
Q1

m Qs

M
(3.10) = (1 + sz > l|%, for all ¢ € Si.

Hence, from (3.8) and (3.10) we conclude that there exists a constant C, inde-

pendent of h and 4, such that

(3.11) Cllglla, <ll¥llas < [[¥lla, for all 4 € Sy.

Recall that if p(® € S; then the invariance property of S; implies that p(*) € §; for
all k. Furthermore, from (3.6) we conclude that p, — p'*) € Sy for all k. Thus, the
desired result follows from (3.11) and Theorem 3.4. O

3.3. General source terms; a convergence result. A crucial condition for
Theorem 3.4 is assumption (2.6) on the source term f. In this section we will briefly
discuss general source terms, i.e. source terms f that only satisfy f € L%(f2). Clearly,

Corollary 3.3 is still valid in this case. Hence, the eigenvalues of M, 1A5,h satisfy
(3.12) A€ {0} U, 1],

where we recall that Ag is a positive constant independent of § and h.

Positive definite problems with eigenvalue distributions of the form (3.12) have
been thoroughly studied by Axelsson and Lindskog [3, 4]. They showed that an error
bound of the form

— plk)
Il <¢

will be reached in at most

(3.13) b In(2/€) +1n(1/6) +1
' In(e—1)

13




CG-iterations. Here, £ > 0 is the error level and o is given by

oo L=V
1+

Thus we observe that the number of CG-iterations increases as O(In(1/4)) in this
case, and that the norm here depends on §. So we conclude that our results are much

sharper in the cases where (2.6) is satisfied.

4. The preconditioning scheme. We have observed above that linear systems

of the form

(4.1) Asnph = fn

where Asp is defined by (2.12), can be effectively preconditioned by the operator Mp,
defined in (2.13). In order to apply this preconditioner, we have to be able to solve

systems of the form
(4.2) Mpon = gn

efficiently, since this operation is needed within each CG-iteration. For some problems
this is straightforward; consider e.g. the case of A = I, where I is the identity matrix

and Q = R, where R is a rectangle. Then (4.2) reduces to
(4.3) Lnvn = gn

where Ly, is the discrete Laplacian. Problems of the form (4.3) posed on a rectangle
can be very effectively solved using FFT-based fast solvers, c.f. Buzbee et al. [13],
Dorr [18] or Swarztrauber [32]. Thus in the case of A = I and 2 = R, we have a good
preconditioner. It should be noted here that, although we limit our discussion to FFT-
based fast solvers on rectangular domains, this preconditioning strategy is applicable
whenever a fast solver is available. Hence, by using multigrid methods or domain
decomposition based methods, we can handle more general domains. Furthermore,
we will show below that for homogeneous Neumann type boundary conditions very
general domains can be handled using domain imbedding.

Next we consider the case of a general tensor A satisfying the requirement (2.7),
but we still assume that Q@ = R. Problems of the form (4.2), posed on a rectangle
R, can be preconditioned by the operator Ly in (4.3). More precisely, within each
CG-iteration for solving (4.1), systems of the form (4.2) have to be solved. This
system can be solved using the CG-method, defining an inner iteration, with L, as a
preconditioner. We have already stated that systems of the form (4.3) can be solved
very fast. Furthermore, the spectral condition number of L;th satisfies

K(Ly ' Mp) < M/m,
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where M and m are defined in (2.7). Thus the inner iteration converges in O(y/ M /m)
iterations independently of h and 4.

From these considerations, it follows that we have a good preconditioner for (4.1)
whenever () is a rectangle. Next we discuss how this technique can be applied in the

case of non-rectangular domains in reservoir simulation.

4.1. Domain imbedding. In order to apply this preconditioning strategy to the
pressure equation arising in reservoir simulation, we have to reconsider the boundary
condition (2.4). We assume now that the reservoir is surrounded by non-permeable
rock. Thus Tq = @ and T, = 99, i.e. we have a no-flow boundary condition on the en-
tire boundary. This assumption on the boundary condition facilitates the application
of a domain imbedding procedure to handle complicated geometries.

The domain imbedding procedure is defined by introducing a small regularization
parameter € defining the mobility in R — ) where R is a rectangle covering Q. Thus
the mobility tensor is extended to the new domain by putting it equal to e times
the identity outside the original domain, see Figure 4.1. As e tends to zero, the
fluid flow from Q into Q. = R — 2 tends towards zero. That is, the pressure and the
velocity of the problem defined on R converge towards the solution and velocity of the
original problem as € tends to zero, see [30]. Moreover, the theory presented above will
lead to convergence results for for the CG-method independent of the regularization
parameter €.

Let us give a slightly more detailed presentation of the domain imbedding proce-

dure. We will study equation (2.3) with a homogeneous Neumann boundary condition
(4.4) v.-n=0 onI, =00

in this section. In order to obtain a properly posed problem, the space V, introduced

in Section 2 is redefined by

(4.5) VQ={¢6H1(Q); /dez=0},

and the source term f is assumed to satisfy (2.6) along with

(4.6) /Qf dz = 0.

It is well known that, under these assumptions, the weak formulation of the problem
(2.3) and (4.4) has a unique solution p € Vq.
The Ritz-Galerkin discretization of this problem, in terms of a finite dimensional

subspace Vq 5, of Vo, is defined in the usual way: Find p;, € Vg, such that

(4.7 /QV¢ -(AsVpy) dz = /va,b dz for all ¢ € Vo p.
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Fig. 4.1. An ezxample of a domain Q = Q1 U Qs imbedded in a rectangular domain R =

Qe U UNs.

Now we want to approximate the solution pj, of (4.7) by the solution p,  of a problem
posed on a rectangular domain R. Since we assume that ) is bounded, it can be
imbedded in a rectangular domain R, i.e. ) C R. Next, we introduce a regularization

parameter € > 0 and define an extended mobility tensor A s by

As(z) for z € Q
el for z € Q.,

(4.8) Acs(z) =

where I is the identity matrix, and Q. = R — Q, see Figure 4.1. Let f denote the
canonical extension of f to R by putting f = 0 on Q.. Then the approximation p p

to py, is defined as follows: Find p j, € Vg, such that

(4.9) /R Vo - (AesVpep) do = /R Fpde for all v € Vi

Here, Vg, is a finite dimensional subspace of

VRz{weHl(R); /Rwdar=0}.

Clearly, we are concerned about how well p. , approximates pp, on 2. We studied
this approximation problem in a slightly different setting in [30]. By modifying the

argument given there, it can be shown that

|Pe,h — PrllH1 () < ce,

Ive,n — Vi ll(z2))2 < ce,

where ¢ is a constant independent of €,§ and h. Consequently, we can solve (4.9)
instead of (4.7) and only introduce an error of order O(e). This shows how we can
exploit the existence of fast solvers on rectangles also in complicated domains.

Now the preconditioner is defined as follows. Let A.sp : Vr,n — Vg, be the

linear operator associated with the problem (4.9) and define M}, = Aq 1. Clearly,
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solving (4.9) is equivalent to finding p. j such that
(4.10) Mt Ac s hpen = My, ' f,

where f, denotes the L2-projection of f in Vg . Then, by a straightforward gener-
alization of the theory presented in Section 3, it follows that the problem (4.10) can
be efficiently solved by the CG-method. More precisely, the number of CG-iterations
needed to obtain a relative error less than a fixed error level, is independent of €, §
and h, see Theorem 3.4.

We have described how complicated domains can be imbedded in rectangular
domains without introducing significant errors. This enables us to apply FFT-based
fast direct solvers as preconditioners. But it should also be noted that a similar ap-
proach can be used to imbed a complicated domain into a simpler, but not necessarily

rectangular domain, and thus facilitating the application of a multilevel method.

5. A computational study of the method. The purpose of this section is
to present some examples illustrating the behavior of the preconditioning method
described in the previous sections. We will consider both some cases covered by the
theory developed above and some examples where we violate some of the assumptions.

In all our experiments we consider a diagonal permeability tensor of the form

1 0
A; = Ks ;
01

where K is a scalar function. If not stated otherwise, the source term f is given by

1 for (z,y) € [0.375,0.468] x [0.562,0.656],
flz,y) =4 —1 for (z,y) € [2.625,2.718] x [2.437,2.531],

0 elsewhere.

We will only consider problems with a homogeneous Neumann boundary condition,
i.e. boundary value problems of the form (2.3), (4.4). This boundary value problem
is discretized using standard piecewise linear finite elements. The linear systems (4.1)
arising from this discretization are solved as described in Section 4 above. All the
implementation is done within the Diffpack framework [19, 28].

In the preconditioning technique described in Section 4, linear systems of the form
(4.3) have to be solved very efficiently. This is achieved by using a “fast solver” of the
kind discussed by e.g. Buzbee et al. [13], Dorr [18] and Swarztrauber [32]. Although
these solvers require O(nlog(n)) flops, where n ~ 1/h%, our numerical experiments
show that they are significantly faster than e.g. a multigrid method for relevant mesh

sizes.
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The computations are carried out in double precision. In all our experiments,
p® =0 € 8, is used as initial guess in the iteration process, cf. Theorem 3.4, and
the CG-method is halted when
Ifn — Ae,&,hp(k)uz

[l £l

where || - ||2 denotes the Euclidean norm.

(5.1) <107¢

5.1. Large variations in smooth coefficients. In the theory developed above,
we allow K to have large and discontinuous variations. In fact, we assume that Kj
attains values on certain levels, say O(1) and O(§). Before we address such cases

computationally, let us consider a smooth function of large variation,

§+ (x—3/2)%(y — 3/2)?
d+(3/2)4

K&(-’E,y) =

on the domain Q = [0, 3]?. Clearly

SUP(p,yyeq Koz, y) 6+ (3/2)*
inf(w,y)eQ K(;(;c,y) o ’

and then, by the argument discussed in Section 1, we expect the number of CG-
iterations to grow as O(6~1/2). The number of iterations are given in Table 5.1 and

we note that the estimate O(6~1/2) is fairly accurate.

5 1/2 | 1/4 | 1/8 | 1/16 | 1/32

CG-iterations | 26 38 55 79 114

Rate - -0.54 | -0.53 | -0.52 | -0.53
TABLE 5.1

The relation between the numbers of CG-iterations and § for a problem with large variations

in smooth coefficients. The number of unknowns is n = 1025 x 1025.

Certainly, this shows that the classical bound based on the condition number of
the preconditioned operator is sharp in the case of a smooth Kj. Consequently, for §
sufficiently small, the preconditioner is not very good for such problems. At present,
we are unaware of preconditioning techniques that can solve such problems with a

number of iterations independent of n and 4.
5.2. A discontinuous coefficient. Next we consider a problem of the type

described in Section 2. Define

d (z,y) € Qs,
1 (xay) € 0_957

Kd(may) =

where Q and Q; are depicted in Figure 5.1.
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