Object Relational Modeling
COT/4-04-V1.0

0

Centre for Object Technology

Centre for
Object Technology

Revision history: V1.0

First public version

Author(s): Allan R. Lassen, Rambgll informatics
Johnny Olsson, WM data
Kasper Dsterbye, Aalborg University

Status: Public
Publication: Public
Summary:

In the database area, there has been some pressure to support richer
semantic models than the now classical relational model. The pres-
sure has been to support the object-oriented model. However, the
larger market has not been willing to adopt a pure object-oriented
model, but some of the magjor producers of database management
systems have introduced systems which they call object-relational,
trying to combine relational and object oriented technologies. This
report embraces that approach, and takes the perspective that rela
tions are a natural thing in modeling reality. Our notion of object-
relational modeling is borrowed from Rumbaugh. The report de-
scribes the fundamentals of the model, it reports on experimentsin
implementing it in both an object-oriented language (Smalltalk), and
amodern object-relational database (Oracle 8). It gives a brief out-
line on some preliminary experiences from a concrete modeling case,
the rule-checker of the STADS system, and it points to some new

directions which must be investigated.

© Copyright 1998

The Centre for Object Technology (COT) is a
three year project concerned with research, ap-
plication and implementation of object technol-
ogy in Danish companies. The project is finan-
cially supported by The Centre of IT-Research
(CIT) and the Danish Ministry of Industry.

Participants are;

Maersk Line, Maersk Training Centre, Bang &
Olufsen, WM-data, Rambgll, Danfoss, Systematic
Software Engineering, Odense Sted Shipyard,
A.P. Mdler, University of Aarhus, Odense Uni-
versity, University of Copenhagen, Danish Tech-
nological Ingtitute and Danish Maritime Institute

Centre for

Object Technology

INTRODUCTION . ..o 4
(@ 8 TN S0 == =0 = 4
THE OBJECT-RELATIONAL MODEL OF RUMBAUGHccoooo oottt 5
B 1Y) = TN 5
SUPPORT OR SIMULATION 111ttt tteetttetttaasssesstssssssasssssssssssanssssesssssssssnssessseessssnssresteessrnnssreesseesin 6
RELATED WORKcttuutiieitiiettttesseeesteette st eeesse e s sbaassssase e et b sseea s e e s s baasseasseeabaaasseessesasbaanssesssessrann 6
IMPLEMENTATION STRATEGIES ... oo 8
OBJECT ORIENTED PROGRAMMING.ceeitittttnsseeessessssnsssssssessssssssssssessssssesssresssassesssseessinnsseessne 8
OBJECT-RELATIONAL MODELING, ORACLE 8.....co oo 9
THE STADSRULE CHECKER —A CASE STUDY oo oottt e e e 12
= = N =N 14

L SSUES ... 15
SUPPORTING UML, UML SUPPORT ... s s e s e n e e e n e nnnnnn 15
OBJECT ORIENTED PROGRAMMING WITHOUT REFERENCEScuvuuiiiieiierttinsseeesreesssnnsssesseesssnnsseessee 15
DERIVED RELATIONS ...iitttetttuueseeeeteestssasssessssesssasssessseesssanssessesssssnsssssesseesssnsseesseesssnnsseesseessnnn, 16
RELATIONAL OBJECTS OR EXTENDED TUPLES ...cvvttuuiiieeiiiesttiesseesteessssnssessssesstsnssssssessssnnsseesssessmnn, 16
LT =17 Lt 16
CONCLUSION e s e e e e nnnnaan 18
SMALLTALK IMPLEMENTATION ..ooieitititittttteteeteesess 20
CREATING RELATIONS. ..ttt eiiteetttee st e ettt e s s e e et e e et s eeeeteestb s seeasee s s b b seeessesssbasssesseessransseeasens 20
AACCESSING RELATIONS ...iiiittttet e ee sttt e st e e st eeatae s s esasse e s tba s seeaseestbaa s seeaseeasbaasssesseessbanseeassesssras 21
AJTING @SSOCIALIONS. ...ttt ittt sttt sttt sb e sbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesreens 21
REMOVING @SSOCIBLIONS.eiteiitiiitiiiiie ittt st eb et e ebesanesanesnes 22

= g o= = o] T === 1] oo PSSR 22

L0 0= /1 o PPV R PR TRR 22
IIMIPLEMENTATION utuuuteeetteettuuseeeeseessssasssessssesssnesssessseesssanasssessesssssassseessesssssnssseesseesssnnnsseesseesssnns 23
Implementation of special access MELNOUS...........cviiiiiiii s 25

F (=T 0 1 1= L0101 < <1 [25
ORACLE IMPLEMENTATION e s e s s e s e s e e nnnnann 26
CREATING CLASSES ..tttttuutieetteestuussesesttsssssessesstesssssnsssssseesssstseettessssstseesteestmnseesrerssinnnreessee 26
CREATING RELATIONS 11tuutteeettetttttsseeesttssssaessesstesssssassssssseessssstsssssesssssnsseestessssnssssesseesssnnsseessees 26
AACCESSING RELATIONS ...ciiiittttes e e ettt ettt e s s e e st eeata s s s eas st e st sseeaseestba s seeaseessbaassseaseeesbannsesasseessrns 27
AJJING @SSOCIALIONS.cveeitee ittt sttt sttt st e st e sb e e b e e bt e sbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesaeens 27
REMOVING @SSOCIALIONS.ciueiitiiitiiiiie ettt e e bbbt e sebesabeennesneas 28
MEMDEr SNIP TESHING. ...ttt sttt sttt sttt sttt ettt e nnesneas 29

L0 0= /1 o PSPV R PR TRR 30
REFERENGCES ... oo 32

COT/e-04-V1.0

Page 3 of 32

Centre for
Object Technology

1 INTRODUCTION

In recent years object oriented techniques have moved from being primarily a pro-
gramming paradigm to also include earlier phases of software development. The most
prominent notation used in object-oriented analysis and design today is UML. UML
introduces new abstraction mechanisms, which were not previoudly part of the object
oriented programming paradigm. Most noteworthy is the concept of association and
aggregation. An important claim to fame for object oriented techniques is that the
same abstraction mechanisms are used throughout analysis, design and implementation.
Hence, it seems strange that associations should be supported only during analysis and
design. This leads to a semantic gap between design and implementation. In 1987,
Rumbaugh published a paper [2], in which he argues that associations (in that paper
called relations, a naming we adopt in this report as well) are more important to mod-
eling than specialization. He also demonstrates how relations can be supported directly
in programming languages and give proof of concept through the language DSM [3].

This report will try to verify Rumbaugh’s claims. This will be done at two levels. First,
we will carry out the experiment to incorporate object-relational modeling techniques
in the object oriented programming language Smalltalk. Smalltalk is chosen for two
reasons, it serves as atest to see how well relations can blend into a language, which is
considered to have a “pure” object oriented model, and it is relatively smple to ac-
commodate new constructs through meta-class programming. Parallel to the Smalltalk
implementation, we will examine how well a modern object-relational system supports
Rumbaugh’s ideas. At the second level, we have tried the object-relational modeling
technique on alarger system, the STADS system developed by WM-data.

1.1 OUTLINE OF REPORT

The report isin three major parts. Sections 2, 3, and 4 deals directly with the model for
object-relational programming described by Rumbaugh. First, his model is described in
section 2, in section 3 we describe our experiences in creating support for the object-
relational paradigm in Smalltalk and Oracle 8, representing two very different ap-
proaches. Finally, in section 4 then we present and comment on our experiences on
using object-relational model on alarge system. Section 5 represents the second part of
the report, and deals with further issues which are needed to consider as extension and
clarifications of the object-relational model. These issues arose from our experiencesin
doing object-relational modeling in our case study. The last part of the report is the
appendices 7 and 8, which describe how to implement the object-relational model in
Smalltalk and Oracle 8. The choice of these two systemsis primarily based on our own
interest, and they each have some appealing features. Smalltalk is quite flexible because
of meta-classes, and the system can be changed to assmilate the object-relational
model nicely. Oracle 8 claims to be “object-relational” from birth, and it is therefore
interesting to examine how well one can get to Rumbaugh’s model.

COT/=-04-V1.0
Page 4 of 32

Centre for
Object Technology

2 THE OBJECT-RELATIONAL MODEL OF RUMBAUGH

As described earlier, the main goal of this paper is to verify the results presented by
Rumbaugh. If this is possible, we believe that relations should play a much more
prominent role in object-oriented programming than it does today.

2.1 THE MODEL

The programming language DSM [2] includes relations as a semantic construct. In this
section, we will present the most important aspects of the model, and some of its
shortcomings as pointed out by Rumbaugh.

The fundamental idea is to introduce relations as a language construct at same level as
classes. Just as classes describe a set of objects, relations describe associations be-
tween objects. Between is the keyword here, a relation does not belong to either of the
classes it connects, but is something that ties different classes together.

In DSM arelation can be declared as;

RELATION Works_for
(employee: Person, employer: Company)
This states that there is a relationship between objects of type Person and Company.
That the relationship is named Works for, and that the objects of type Person plays the
role of employeesin the relationship, while Companies play the role of employer.

To add concrete associations to the Works for relation, the following syntax can be
used:

Works_for.add(Allan, Rambgill)
Works_for.add(Kirsten, WM_data)
Works_for.add(Johnny, WM_data)
Works_for.add(Kasper, Aalborg University)

Two types of query are supported in DSM. One can ask if two objects are related
through the test operation on relations:
Works_for.test(Allan, Aalborg University) returns false
Works_for.test(Johnny, WM_data) returns true.
To get the set of objects related to a given object the DSM model uses a bizarre syn-
tax:
Works_for.index_2(WM_data) returns {Kirsten, Johnny}
Works_for.index_2(StoneWare) returns {}
A more readable syntax would be;
Works_for.getEmployees(WM_data) returns {Kirsten, Johnny}
Works_for.getEmployees(StoneWare) returns {}
The model aso supports cardinality constraints and a simplified kind of three-way re-
lation called a qualified relation. The model is further discussed in [2,3].

COT/e-04-V1.0
Page 5 of 32

Centre for
Object Technology

2.2 SUPPORT OR SIMULATION

An important question to consider is whether it is necessary to introduce a new lan-
guage construct. This becomes an especially important question in the light that most
object oriented analysis and design notations have had support for associations, and
programming languages have not. Rumbaugh mentions six reasons why it is necessary
to let relations be a language construct in its own right: (Near verbatim citation from
sec. 3.3in[2])

Information hiding. The language construct should not revea its implementation.
There may be more than one possible implementation of a logica relation. A pro-
grammer should be able to choose the implementation using an option flag on the dec-
laration, without changing the code that uses the declaration or even most of the decla-
ration itself.

Initialization. A more technical issue is that the compiler can instantiate and initialize
relations implicitly at the beginning of program execution, just as object classes are in-
stantiated and initialized.

Special syntax. In addition, the language construct should have a syntactic appearance
that makes it feasible and natural to use. The language can provide special syntax to
simplify operations on relations, just as special syntax is provided for method applica-
tion.

Access methods. The compiler can provide syntactic sugar to access and update rela
tions seen from the view of the participating objects. The compiler can automatically
generate methods on the participating object classes to access and update the relations.

Integrity. There must be built-in means for managing relations and objects when ob-
jects are destroyed. Object classes will have a list of relations they participate in, repre-
sented in a uniform way. This information can be used in writing generic methods to
destroy objects and clean up relations they participate in, to copy objects and objects
they are related to, and to pretty print objects along related objects.

Conceptual support. Finally, there is an important aspect of non-technical type. Most
importantly, treating relations as important built-in semantic constructs changes the
way programmers visualizes and formulate problems. Thinking in terms of objects and
generalizations hierarchies is in generally unfamiliar at first, but eventually changes the
way programmers thinks about a problem. We have found from experience that mak-
ing relations a first-class semantic construct affects a programmer's way of thinking
about a problem from the design stage all the way through the coding. This new way
of thinking is particularly useful for formulating and partitioning designs.

We are quite compelled by these arguments, but we think that the idea of relations in
object-oriented programming needs further empirical grounding.

2.3 RELATED WORK
Apparently, there has been much work following up on Rumbaugh object-relational

COT/e-04-V1.0
Page 6 of 32

Centre for
Object Technology

modeling and giving semantic support in programming languages. Rumbaugh himself
has since only considered the modeling part through OMT and later UML. Giving se-
mantic support in programming languages have been given very little attention in the
research community as far as we can tell. However, we can point to two papers, which
addresses the issues. In [6] March and Rho describes an object-relational system,
which adds E-R semantics to object oriented modeling. Their system is very similar to
the Smalltalk system we have developed (see appendix 7). It is a direct implementation
of Rumbaugh’s model, with some extensions for querying and navigation. Asisdonein
our system, March and Rho uses meta-classes to implement access methods etc. One
difference is that we implement relations as classes whereas they realize them as ob-
jects. At the modeling level, we support attributes on relations, which they do not. On
the other hand, they have gone further by supporting queries for relations as well as for
classes.

As mentioned, the notion of association has had a strong influence on the analysis and
design notations, but has not had any impact on programming languages. This leaves
us with a serious question of why that is the case. Three possible answers present
themselves. (1) Supporting associations is a bad idea. (2) There is a gap in the design
of object oriented programming languages. (3) The notion of associations is not well
matched to object oriented modeling. Our standpoint has been that (2) is the case. In
[1] Velho and Carapuca argues that (3) is the case. They present three arguments to
support the claim. First, relations break down class encapsulation because relations are
external to the objects, but state something about the objects anyhow. Second, they
state that relations break down abstraction because relations become a kind of entity
without real world counterpart. Their argument is that relations introduce a semantic
gap between the real world and the created models. Lastly, they argue that relations
break extensibility because an inheritance mechanism will be needed for relations, and
relation inheritance will most likely differ from that of classes.

We find that all three claims can be refuted. Their last argument is likely to be correct,
but under other circumstances, such an argument will be put on the agenda for further
investigation, as indeed it is done in Rumbaugh’s original paper [2]. The first two ar-
guments are really a fundamental issue on the nature of object orientedness. They take
for granted that the fundamental abstraction is objects and only objects. In the Scandi-
navian school of object oriented programming, there is a deeper foundation, which is
that the fundamental issue is modeling the real world using natural abstractions. If re-
lations turn out to be natural to use, modeling should support this, and so should pro-
gramming to avoid a semantic gap between model and program. We are convinced that
relationships are a natural abstraction. However, the ideas presented by Velho and
Carapuca are an interesting alternative to relations, and it would be an interesting exer-
cise compare the two approaches on the same underlying model, (e.g. the model intro-
duced in the next section).

COT/=-04-V1.0
Page 7 of 32

Centre for
Object Technology

3 IMPLEMENTATION STRATEGIES

This section will examine two strategies for implementing an object-oriented model
with relations. First, we will address how to extend existing object-oriented languages
with relation support, as well as examine how relations can be mapped into standard
object oriented languages. Secondly, we will investigate implementation in the new
object-relational paradigm, exemplified by Oracle 8. These two discussions will loosely
follow the six issues raised by Rumbaugh in section 2.2.

3.1 OBJECT ORIENTED PROGRAMMING

For the programmer there are two ways to come from an object-relational model to a
purely object oriented model. The easiest would be if the compiler were extended to
include relations as a semantic construct, letting the compiler take care of the tranda-
tion. The harder way is to transform the relations into classes, objects and methods by
hand. This section examines both strategies.

Binary relations between objects can be seen as a set of pairs of object identifiers. The
relation can then be seen as a collection object, which has methods for adding and re-
moving pairs. The collection must also provide methods for querying, allowing us to
find al the objects related to a given object. It is therefore straightforward to imple-
ment relations in an object-oriented language. However, this implementation does not
meet all the requirements put forward in section 2.2.

The simple solution offers some degree of information hiding, the relation as a collec-
tion object does not reveal its implementation, whether it stores the pairsin a set, or in
hash tables, or by some other means. In practice, one would properly provide several
implementations to support different categories of cardinality, a 1-1 relation can be im-
plemented more efficiently than a many to many relation. However, the relation does
reved itself as an object. Initialization of the relation can be done in the constructor of
the relation collection, initializing the relation only when needed. One can argue that
this is more appropriate than the compiler forcing it to happen at the beginning of the
program execution as proposed by Rumbaugh. This approach allows non-global rela-
tions, which is not possible in DSM. Regarding the issue of special syntax, the “relation
as collection object” obviously cannot provide specialized syntax, as this requires
changes to the compiler*. The issue of specia access methods is a particular case of
specialized syntax. The issue of integrity is hard to address properly without compiler
support. The relations the object participates in must be updated when the object is
destroyed. There is no inherent problem in doing this, but without compiler support
there is no guarantee that it will be done.

The last, and perhaps most important, issue is conceptual support. Here it is very diffi-
cult to say what will happen if one stick to the simple collection object solution to re-
lations. One can argue that there should always be specialized syntax to support im-
portant semantic constructs. The language SETL proposed speciadized syntax for Sets,
APL had specialized syntax for matrix calculations. However, it has been the experi-

! Alternatively, it can be done using Meta programming as discussed in section 7.
COT/e-04-V1.0
Page 8 of 32

Centre for
Object Technology

ence of Smalltalk programmers that the standard collection classes, has a deep impact
on their programming style, even though no special syntax is provided. Similarly, op-
erator overloading in C++ allows very elegant solution to matrix calculations without
the cost of specialized syntax. Whether or not the simple “relation as collection class’
solution is sufficient depends as much on the syntactic elegance of the programming
language in question — e.g. how well a the relation-collections can masquerade as
proper relations - as it does on general properties of object oriented programming.

However, we believe that the issues of special syntax, especially access methods, and
integrity does warrant compiler support. The question is then how much work need to
be done by the compiler to support relations. This will depend on the programming
language in question. In our experience with Smalltalk, there has been no need for spe-
cia syntax beyond access methods, and we believe that to be the case in general. We
have not investigated to what extend relations can be implemented conveniently using
pre-compilers or if they need to be tied closely into the compiler proper.

Integrity is a much harder problem, since it involves the details of instantiation and de-
struction of objects. In a few cases, the relationship is constrained in such a way that
any objects of a specific type X must be related to another object of type Y. This
means that whenever a new X-object is created, it must be related to an Y-object. To
ensure this the constructor of X must be changed to address this. However, it is not
apparent how this can be done in general, and it seems unlikely to be a subject for
automation. When an object is destructed, it must be removed from its relations.
Again, this is a language specific issue. In languages without garbage collection, the
object must be removed from the relations in order to avoid dangling references. If the
language does support garbage collection, the programmer must be aware that the re-
lations will prevent the object from being collected.

An dternative to both the “relation as collection object” and semantic support through
compiler support, is to follow current programming practice of programming of
transforming associations and aggregation structures based on UML specifications.
This practice is characterized by hand-coding the associations according to the specific
properties of the specified associations. To the experienced programmer, this is nor-
mally done using references and collections, and the process of establishing navigation
paths between objects is a natural and important program design issue. E.g. a pro-
grammer might realize that a specific one-to-many association between X and Y is
really only mono-directional, and therefore implements the association as a set in X
containing al the Ysiit is associated with. Such transformations should be possible to
formalize into a pattern language and design patterns. For example, a 1-to-1 relation
can be implemented as a pair of mutual references in the participating objects under
most circumstances. The advantage of such transformation is that the programmer is
better at choosing the optimal solution for each specific situation, and that no special
support is needed. As earlier said, this is current practice, so no one is confused by a
paradigm shift.

3.2 OBJECT-RELATIONAL MODELING, ORACLE 8

In an object-relational database environment like Oracle 8, implementing an object-
oriented model with relations involves defining the model using the data definition lan-
COT/e-04-V1.0
Page 9 of 32

Centre for
Object Technology

guage from SQL and implementing the functionality of objects, i.e. methods, through
the PL/SQL language, which is Oracles procedural extension to SQL. The model can
then be accessed from the environment itself e.g. with Oracle SQL*Plus using SQL
and PL/SQL.

Using embedded SQL in languages like C/C++ or Cobol you can execute any SQL
statement including data definition statements from an application program. However,
here is no difference in implementing the model in SQL*Plus or using a pre-compiler
like Oracle Pro* C/C++. In both cases, SQL and PL/SQL will be used to define the
data model.

Alternatively, one could consider implementing Rumbaugh’s model in C++ using Ora
cle 8 as the pergistent store. This has not been further investigated because we believe
it will lead to something close to the Smalltalk implementation. Therefore, in our Ora-
cle 8 implementation we will stick with plain SQL and PL/SQL.

The Oracle 8 environment naturally supports relations but the implementation does not
meet the all the requirements from section 2.2. In away, a lot of the discussion from
the previous section also applies to Oracle 8. The SQL language i.e. the data definition
statements could be extended to support the missing features and making the compiler
responsible of generating the needed code. Another possibility is to develop some kind
of pre-compiler that will transform the extended SQL statements to the statements that
is currently supported in SQL and PL/SQL. Finaly, the programmer can hand-code it
from general patterns as discussed in the previous section.

In our implementation in chapter 8, the issue of information hiding is almost given in
advance, because we have to use database tables to implement many-to-many relation-
ships. We would then hide these tables by defining proper access rights so they would
only be accessible to the public through the implemented package. An important point
is that we can choose to implement one-to-one and one-to-many relationships without
using a database table and still keep the package interface intact. It is therefore possible
to achieve information hiding.

We found no need for initialization of the relation. We do have the opportunity though
in the package. A package contains a section that functions like a constructor in object
oriented languages, and this section is executed when the package isfirst used.

The issue about specia syntax is fulfilled in the sense that the relation is implemented
in a database table and a package. Therefore, we can use relations the same way as we
use classes and we believe that is as close as we can get to natural use in the program-
ming paradigm. We have to provide the access methods ourselves but we could de-
velop a pre-compiler that will automate the process. We do not believe that we need
changes to the syntax to address the issues of specia syntax and access methods. In
our experiments, we found that we could not use the access methods in all contexts, so
we had to code it in a different way. Thus, we would desire better support of using the
methods in SQL-statements.

At present, we cannot solve the issue of integrity with built-in features for references
to objects. If a referenced object is destroyed, the reference will be dangling. Oracle,

COT/e-04-V1.0
Page 10 of 32

Centre for
Object Technology

however, does provide facilities to ensure referential integrity on foreign keys in the
relational database, namely by declaring constraints. As arelational database, Oracle 8
still supports foreign key constraints. Nevertheless, our problem is that we use the new
object references and they lack constraint facilities. We expect they will be imple-
mented in a later release of the Oracle database. Meanwhile we may use database trig-
gersfor delete operations on the tables. The triggers could be generated automatically.

It isinteresting to see how programming will change when we focus equally on classes
and relations. Today we usualy try to eliminate the relation itself and implement its
function in the participating objects. One can argue that programming aways will be
based on the object classes and that we will use their access methods to get to their
related objects. Perhaps that will often be the case because the relation doesn't have a
strong and natural position in the problem domain. This may change however if we
name the relations by the noun form of verbs instead of plain verbs. In Rumbaugh's ex-
ample with the Works for relation it may seem awkward to express Works_for.Add(...).
Instead we could name the relation Employment and the statement will then be Em-
ployment.Add(...) Which is easier to cope with. We believe that kind of relation names
give amore natural way of thinking about a problem and if we have problems finding a
proper name then it is probably because the relation is weak in the problem domain.

COT/=-04-V1.0
Page 11 of 32

Centre for
Object Technology

4 THE STADS RULE CHECKER — A CASE STUDY

To test relations as a semantic construct, we have used them in a paper and pencil ex-
ample, combined with a simple usage of the Smalltalk implementation described in
section 7. We are aware that this does not provide us with the same level of under-
standing as a major programming project would have provided. However, several in-
teresting observations have been made.

The case deas with one aspect of a large generic administration system called
STADS:. The selected part deals with describing educations and the courses and ex-
ams that constitute these educations. It deals with describing the concrete career of
individual students, and most importantly, it deals with describing the rules that make
up the passing criteria and structural constraints of the educations themselves. The
analysis and design of the STADS system is further described [7].

To provide a framework for describing educations, a number of concepts have been
defined, ranging from government regulations and degrees, to courses and individual
exams. Each of these concepts can be described using rules. For an individual exam,
the rule might say something about the passing grade, for a course it might say some-
thing about the minimum grade average needed for its constituent grades. The rules
associated with a degree might state that a certain number of courses must be passed,
or that in general all exams must be passed with a certain minimum grade. The career
of a specific student contains the courses actually followed by the student. Most edu-
cations are structured to have required as well as voluntary courses, and the career of
each student therefore varies in structure as well as in grade results, even if they might
end up with the same degree.

Relations have played an important role in describing the STADS rule checker. They
have been used to describe the relation between the different descriptive elements (de-
grees etc.), the paralel relationship between the corresponding career elements, and to
associate career elements with their descriptions. Relations are also used to associate
descriptive elements to their rules, and to associate individua dispensations from the
rules with career elements for the student who has the dispensation. The following fig-
ure gives afuller picture of the model.

2 STADS isashort for 'STudieADminstrationsSystem’ (Education Administration
System in Danish). The system concerns administration of students, student programs,
teaching, exam planning, and public scholarships. STADS has been developed since
1993. The first universities started to use the system in 1996. As the system gets more
developed, more universities are taking in into use. The system is implemented on a
Oracle 7 platform and works for UNIX aswell asVMS

COT/e-04-V1.0

Page 12 of 32

Centre for
Object Technology

Career Description
Element Element

i i
| | | | |
| C_Education |—| C_Program | Program |—| Education |—| Regulation |

-] = ||

Element Element

JAN

i
| | | | |

C_Group C_Exam. C_Teaching Teaching Exam. Group
activity activity activity activity

In the diagram, there is a single association between Career element and Description
element. This association should be interpreted as a pair-wise association between spe-
cidizations within the two hierarchies. As an example it is interpreted as associating
Career programs (the program followed by a specific student) to programs as offered
by the educational institution. The association is repeated between the Career program
element and the program element.

It is worth to notice that the career elements are not instances of the descriptive ele-
ments. The reason is that the descriptive elements are tangible objects in the domain of
the system. The users of the system are used to having such things as course descrip-
tions in their problem domain. This is a prime example of the object-oriented analysis
pattern “item-description” described by Coad [4].

The hard problem however, is the design of the rule checker. The rule checker can
check if the career of a specific student follows the rules of the associated descriptions,
taking into account rules from general descriptions, and taking into account any rele-
vant individual dispensations. The relationship between a career element and relevant
rules and dispensations are called the verification relation.

*
Dispensation

. 0..
\Ie"\ﬁ'\c ano"

0..*
ioment |2 O
1
Ver/f/cat/o,, 07| Assigned |o.* 1| Description
Rule Element

Thisrelation isto costly to maintain, and must be computed when needed, thisis called
a derived relation, and it is an issue which will be further elaborated in section 5.3. So
far we have only seen a need to find the rules and dispensations for a given career ele-
ment, not finding all the career elements cor a given rule. The computation of the veri-
fication relations is as follows. For a specific career element, the relevant rules are ob-
tained by first finding the corresponding descriptive element, and then obtaining the
rules from there. Then we find the father of the descriptive element (e.g. an exam
might be part of a course, which might be part of a degree, which might be under gov-
ernment regulations), and the rules from the father is added to the effective set of rules.
If an assigned rule is encountered twice, only the most specific assigned rule counts.

COT/e-04-V1.0
Page 13 of 32

Centre for
Object Technology

Finally, al rules with dispensations are removed, and the dispensations are added in-
stead.

4.1 EXPERIENCES

Our experiences can be summarized as. Relations are well suited to describe simple
associations between objects, Relations are well suited to understand complex associa-
tions between objects, but it can be hard to formalize complex relations between ob-
jects.

We used the Smalltalk implementation of relations to implement all the associations
and aggregations used in the UML diagrams from the analysis model. It was a very
rewarding experience to see the direct trandation and direct connection between code
and diagram. A practical matter arose though, which was one of naming. Each asso-
ciation on the UML diagram must be given a name to be implemented. To come up
with meaningful names for each association was very hard, and in the end we just set-
tled for a smple systematic naming involving the first part of each participating class.
We believe, however, that the problem has a more profound explanation. Throughout
the work with the STADS system, we were lacking a proper object that captured the
structure of a program or career. Many of the relations in both career and description
are structura relations, and a compelling idea is to interpret these unnamable associa-
tions as making up a single relation (one for career and one for description), which ex-
actly defines the structure.

However, this leaves us with a typing problem. E.g. a program element can be part of
both a program and a group (which is a modeling concept used to provide some reuse
of rules and descriptions).

The Smalltalk implementation compiles access methods into all participating classes.
This eliminates the need to refer to the relation by relation name, but alow us to move
from one object to the other by the role names specified as part of the relation defini-
tion.

When the details of the rule checker was defined, thinking in terms of relations proved
valuable. Rather than focussing on the implementation of the checking algorithm, it
lead us to consider its specification in terms of defining the verification relation be-
tween the career element on the one side, and assigned rules and dispensations on the
other side. The discovery of this relation proved to be pivotal to our understanding of
the inner working the rule checker. However, defining the exact semantics of the veri-
fication relation proved hard. The issue of derived relations is further discussed in sec-
tion 5.3 below.

COT/=-04-V1.0
Page 14 of 32

Centre for
Object Technology

S5 ISSUES

In this section we will present some issues that has presented themselves in our ex-
periments and some issues which we find interesting and think deserves further investi-
gation. The section is unstructured, consisting of a set of independent issues.

5.1 SUPPORTING UML, UML SUPPORT

Introducing relations into object oriented programming can provide a seamless transi-
tion from design notation to implementation. This can be done because relations can
support the different kinds of associations that can be expressed in UML, the most
widespread design notation in use today. Associationsin UML cover both aggregation
structures as well as more loose associations. We find that it is very interesting, and
not outside the scope of a modern compiler to provide different implementations de-
pending on the kind of association and its annotations. On the other hand, we our ex-
periments have revealed that relations are not quite the same as UML associations.
Relations, as discussed so far, are named, and have associated role names for the par-
ticipating objects. Role names in particular seem to be the corner stone in the seamless
integration of relations into the object oriented paradigm. The role names become the
name of the access methods in the participating classes, allowing method invocation to
be the way to query arelation. It is therefore important to use the full UML notation to
state associations, specifying both the name of the association as well as its role names.

5.2 OBJECT ORIENTED PROGRAMMING WITHOUT REFER-
ENCES

So far we have been discussing the issue of merging relations into the object-oriented
paradigm. A more radical approach is to let relations completely replace references in
object oriented programming. We believe this to have severa advantages.

Higher abstraction level. References are one of the few semantic constructs, which
have not successfully been subject to abstraction, but is directly inherited from ma
chine code.

Fewer errors. Using relations rather than references alow us to perform constraint
checks, the notion of sharing is simply described as an object being related to sev-
eral object, and variables are only used to model attributes or static components.

The compiler can produce access methods and choose appropriate implementation
strategies depending on the type of relation. This will produce safer code than what
is normally produced by human trandation, reference errors are well known and
can be hard to debug.

In present object-oriented programming languages, aggregation is only supported
through static references. In the object oriented analysis and design notions aggre-
gation has evolved to become aricher notion, which have no direct support in pro-
gramming languages. Relations might be an answer to this.

If the compiler can recognize the special case of a“one way, 1-1 association”, then

COT/e-04-V1.0
Page 15 of 32

Centre for
Object Technology

it can implement this as a reference, but then references become an implementation
technique used only by the compiler.

As a fina comment, it might be that explicit relations can provide a solution to the
problem of schema evolution in object oriented languages. References carry little se-
mantic information for the compiler to work with - relations carry alot.

5.3 DERIVED RELATIONS

In the STADS rule checker the relationship between a career element and a set of as-
signed rules and dispensations (known as the verification relation) is too expensive to
maintain. Rather it must be computed on demand. This leaves us with two issues. How
can we define such a derived relationship, and how can we then effectively compute it
when it is needed? Our experience was that the very notion of introducing the verifica-
tion relation was pivotal to our understanding of the algorithm, although we could
neither specify nor compute it directly. An obvious path to investigate is to examine
guery languages for object-relational models, as the verification relation can then be
expressed as a derived relation specified by a query.

5.4 RELATIONAL OBJECTS OR EXTENDED TUPLES

In typical relational systems, relationships are values not objects. This means that two
objects can only be related to each other in the same relation once. If we incorporate
relations as a semantic construct, as proposed in this paper, we need to carefully con-
sider this notion. In object-oriented programming objects are not values, but have
unique identity independently of the value of its attributes. 1t would be natural to adopt
this object-oriented view also for relations, making each association unique. This be-
comes especially interesting in the situation where associations can have attributes. An
example is the works-for relation, which naturally can be attributed with salary and job
title. If we use the value approach, a person cannot work for the same company in two
different ways, e.g. as both driver and night guard. However, at present we have not
researched the differences, but it might be that the object view is only necessary when
the relations are attributed, and then also only in certain cases. Rumbaugh chooses the
value approach, which is interesting, as his example is indeed the works-for relation.
Thisis aso the implementation chosen in our Smalltalk implementation.

5.5 INHERITANCE

There are two different aspects to be considered when combining inheritance and rela-
tions. The semantics of relations and class inheritance must be resolved, as class in-
heritance is an integral aspect of object-oriented programming. However, it is interest-
ing to examine the possihility of inheritance for relations as well.

Relations must be defined with such semantics that they work well with class inheri-
tance. In typed object-oriented languages a subtype can normally replace its super type.
Defining a relation R between objects of types A and X therefore defines a relation
between each of their subtypes. If B is a speciaization of A, and Y of X, then R can
relate A-objects to Y-objects, B-objectsto Y -objects etc.

COT/e-04-V1.0
Page 16 of 32

Centre for
Object Technology

In the STADS system, we found a need for co-variant specialization of relations, as the
relation associating career elements to descriptive elements is specialized to say relate
career program elements to descriptive program elements. Trandated into genera
terms, using the A and X classes from above, we see a need to specialize R in such a
way that B objects relates to Y object only. The need arises with typed programming
languages; when navigating the R relation from a B object, it is most convenient that
the returned objects are of type Y, and not X. This prevents intensive type casting. We
did not find an immediate need for general techniques for specialization of relations. In
fact, the case arose from a example of “parallel inheritance”’, where two class hierar-
chies match each other element by element, and the top classes were abstract. This
gives a situation where a general object is never related to a specific one. This implies
that the co-variant specialization of relations is only a typing issue, not a query issue.
Whenever a B-object is in the relation, it is always related to a Y-object. However,
further experience is needed to conclude if other types of relation specialization are
needed, and how widespread the need for co-variant specialization is.

COT/=-04-V1.0
Page 17 of 32

Centre for
Object Technology

6 CONCLUSION

The resent efforts of the database community to provide some support of objects has
been scorned by the object oriented community because of inappropriate support for
objects, classes, inheritance, polymorfic methods etc. Our investigation of the classic
paper by Rumbaugh has verified his claims that relations can complement the object-
oriented paradigm well. We have verified that this can be done both at the modeling
level, and at the programming level, both through compilation techniques, and by
trandation into both pure object oriented programming languages and into the object-
relational model underlying Oracle 8. Our conclusion is therefore that the object-
relational model should not be seen as a steppingstone on the way from relational to
object oriented models, but rather as the synthesis of two strong models. However, the
conclusion is not that the synthesis has been finished. A number of both practical and
theoretical issues remain to be solved - in both modeling and programming.

In the Smalltalk implementation of the STADS model we do not refer to the relations
directly, but navigate through roles. We can see two explanations for this. First, it
might be that we did not properly identify the meaningful relations in the domain. We
have used UML, and as discussed in section 5.1, UML normally do not raise associa-
tions to concepts, but let them remain unnamed associations. For instance, many of the
associations between descriptions represent a single relation, which we might call edu-
cational structure. Another explanation is that roles, not the relations themselves, are
the important thing to consider in object-relational modeling. At the practical level,
roles are perhaps the glue that makes relations become a natural ingredient in the ob-
ject-oriented paradigm.

One can aso ask if relations will aways disappear in practice. At a practical level,
wrong naming of relations might render them unnatura to use. As an example from
section 3.2, the Works _for relation is renamed to Employment, which changes adding
of associations from works_for.Add(...) tO Employment.Add(...). However, we have no expe-
rience to conclude anything here. A more theoretical issue is whether relations with
atributes, e.g. a salary attribute on the employment relation, will also disappear into
roles, or if attributed relations will be more natural to use. Other practical issues also
present themselves, though they have not surfaces in the examples. For instance, is
“total_salary” a method in the company class or on the employment relation?

We have seen a need for derived relations as discussed in section 5.3. The open ques-
tion is how to specify them. One obvious solution will be to use a query language. In
the case of the verification relation from the STADS system, the relation is inherently
recursive, which makes it hard to express in most query languages. On the other hand,
specifying the relation in the underlying programming language as we did is certainly
not the right solution. Rumbaugh also raised the issue of derived relations in his origi-
nal paper.

Two other interesting issues arose during the STADS work: structural relations and
inheritance of relations. Inheritance and relations presented itself in the relation that
holds together career elements and description elements. While the relation can be
specified at the generd, it is tedious to specify that a course description element is re-

COT/e-04-V1.0
Page 18 of 32

Centre for
Object Technology

lated to a course career element, that an exam description element is related to an exam
career element, etc. The problem of structural relations presented itself in the form of
the two relations that holds together the career and description elements in a hierarchy.

An important part of the work presented in this report is contained in section 7 and 8
reporting on concrete implementation experiments of Rumbaughs model in Smalltalk
and Oracle 8. The experience from these two experiments is summarized in section 3,
and will not be restated here.

We have not been able to find much relevant literature on the subject of object-
relational modeling or programming. We find this both disturbing and encouraging. It
is disturbing because it might indicate that the idea was not useful after al, but encour-
aging because not much work has been carried out in the field, and hence it should be
easy to thread new ground.

Our plans for the spring 1998 are to carry out two parallel projects. At the experimen-
tal level, we will continue with the STADS experiment, designing and implementing
parts of the model in Oracle 8 and its associated languages, using the recommendations
and experiences presented in this report. At the theoretical level, we will study the idea
of eliminating references from object-oriented programming languages altogether. This
theoretical project will draw upon the practical problems from the STADS experiment,
and the STADS experiment is expected to draw upon the preliminary results from
theoretical project.

COT/e-04-V1.0
Page 19 of 32

Centre for
Object Technology

{ SMALLTALK IMPLEMENTATION

We will design a smple relation concept for Smalltalk, based on the ideas of Rum-
baugh. The main ideais to let relations be classes, with the set of associations living in
the meta-class, and the associations themselves being instances of the relation. If we do
this, we can quite naturally write expressions in the following way, inspired by some of
Rumbaugh’s examples:

WorksFor testMember: ‘Jim Jones’ and: *Acme Products’

Here worksFor is a relation class, which is send the message testMember:and:, with argu-
ments “Jim Jones’ and: “Acme Products’. This creates a new association object (in-
stance of WorksFor), which is added to the set of associations maintained by the rela-
tion WorksFor. Other operations on relations can be implemented similarly as class
methods. Further, by letting relations be classes, each class can have its own methods,
which allow us do add specialized methods utilizing the role names of the relations to
improve readbility:

WorksFor employee: ‘Jim Jones’

The general idea is to define a class Relation, from which concrete relations inherit
their behavior. The implementation does rely strongly on meta-classes and the dynamic
properties of Smalltalk.

In section 7.1 and 7.2 we address how to create and access relations, and section 7.3
explains the internal representation and the usage of meta-classes in greater detall.

7.1 CREATING RELATIONS
In Rumbaugh examples relations are created in the following way:

RELATION Works_for (employee: Person, employer: Company)

The following Smalltalk syntax would be similar, while staying within the syntactic
limitations of Smalltalk:

Relation named: #WorksFor
relating: #(employee Person)
to: #(employer Company)

A more general message that will create a new relation is of the following form:

Relation named: #WorksFor
relating: #(employee Person cardinality)
to: #(employer Company cardinality)
withAttributes: 'salary titel'

Here we have added cardinality as part of the role specifications, and have added that
each association also has attributes salary and title. These attributes can be imple-
mented as instance variables in the relation objects (associations).

In the underlying code, this creates WorksFor as a subclass of Relation. In this new
class, we also store the role names, types and cardinalities of the relation. This infor-

COT/e-04-V1.0
Page 20 of 32

Centre for
Object Technology

mation is unique to each relation, and should therefore be stored in instance variables
of the meta-class Relation class’.

7.2 ACCESSING RELATIONS

We provide access to the relation at three different levels.

» There are the general access methods defined in the meta-class for Relation, which
implements the functionality of adding and removing associations, querying, and
selecting elements. As an example, the method index1: elem will return the set of ob-
jects related to elem with elem as index1.

* Next, we define customized access methods for the concrete relations, methods that
draw upon the general methods of Relation class. Continuing with the above exam-
ple, a method employee: elem IS added to the WorksFor relation.

» Finaly, we create access methods in the role types themselves. This allows us to
find all the employers for a given person by sending the message employer to a per-
son object.

In the following we will address adding and removal of associations, testing and que-
rying at each of these three levels.

7.2.1 Adding associations

One necessary operation on relations is to be able to add new elements. The basic op-
eration for adding a pair of elementsis (exemplified by the WorksFor relation):

WorksFor insert: ‘Jim Jones’ and: ‘Acme Products’

What we do is that create (and return a new association), and add it to the relation. It
must be checked that eleml and elem?2 are of the appropriate types for this relation and
that we respect the cardinality constraints.

By utilizing the role names, we provide a special access method for adding, which have
the form:

WorksFor add_employee: ‘Jim Jones’
and_employer: ‘Acme Products’

The implementation is straight forward, and is done by compiling methods into the
subclass (of Relation, in this case WorksFor) when the classis created.

Finally we can use the methods compiled into the role types:

¥ Instance-variables of meta-classes are a feature not often discussed in Smalltalk.
They differ from class variables in that class variables are shared by the class, all its
subclasses, and all their instances. Instance variables of meta-classes are only visible in
the meta-class itself, and each class will have its own, just like each instance variable is
unique to each object.
COT/e-04-V1.0
Page 21 of 32

Centre for
Object Technology

*Jim Jones’ employer: ‘Acme Products’

Here we have no syntactic indication that the WorksFor relation is used, only the role
names (roles) are used here. This means that for a given class, it cannot play the same
role in two different relations.

7.2.2 Removing associations

Just as we can add associations, there must be methods to remove them. This is done
using the method:

WorksFor remove: eleml and: elem2
The role names are not used to create a special remove method in the WorksFor rela
tion (though a remove_employee:from_employer: method could be added). However, are-
move method is provided directly in the participating objects:

*Jim Jones’ remove_employer: ‘Acme Products’
7.2.3 Membership testing

The basic operation for membership testing is:

WorksFor testMember: ‘Jim Jones’ and: *Acme Products’

This operation works by creating a new relation object relating eleml and elem2, and
checking to see if this is already a member of the relation. This sort of testing is not
done as often as querying and no special methods have been added.

7.24 Querying

In a binary relation, it is natural to want to find the objects to which a given object is
related. We provide two types of querying, smple querying which returns the set of
objects related to a given object, and association query, which return the set of asso-
ciations containing an given object in agivenrole.

Simple querying returns the set of objects a given object is related to. There are two
operations for doing this.

WorksFor atIndex1: eleml
returns the set of role2 objects that has eleml as first object. The atindex2: works simi-
larly.

In our WorksFor example we would like to index the relation using the actua role
names rather than the generic index1 and index2. We thus prefer a more readable syn-
tax like:

WorksFor employee: ‘Jim Jones’
which returns the set of employers which, has Jim as employee.
As the fina layer, we provide a method in Person, which can return the set of compa-
nies related to Jim through a WorksFor relationship:

COT/=-04-V1.0
Page 22 of 32

Centre for
Object Technology

‘Jim Jones’ employer
Notice again that the Person cannot play the same role in two relations.

Association querying returns the set of associations that has a given object asitsrole.

<RelationName> relObjAtIndex1: elem1

Returns the set of relation-object that has eleml as first role -relobjAtindex2: works
smilarly. This type of query is used access the attributes of associations. In the
WorksFor example we can use this to access salary and title.

Currently no second level access is implemented, but one can obtain the associations
directly from the objects themselves.

‘Jim Jones’ employerAssociations
return all associations which has Jim Jones as employee.

The associations have methods that return the objects it associate. These can be ac-
cessed using the declared role names. Thus “Jim Jones’ employerAssociations first employer
returns the first employer for Jim Jones'.

All querying methods return a set of related objects. This is useful in connection with
Smalltalk’s build-in enumeration methods, and gives some similarity to query lan-

guages.

‘Acme Products’ employee
select: [:employee | employee zipCode = ‘Acme Products’ zipCode]

finds all the employees which has the same zip code as the company.

(‘Acme Products’ employeeAssociations
select: [:association| association salary > 35000])
collect: [:association | association title]

first finds all the associations that associates an employee to Acme Products, which has
a salary above 35000 (remember that salary is a variable on the associations, not the
employees or employers). Then the titles from all these associations are collected. If
the employees were interesting rather than their title, the last line would have read:

collect: [:association | association employee]

7.3 IMPLEMENTATION

In this section we will examine how the relations have been implemented in Smalltalk.
Meta-classes play a major role, so we will briefly introduce them in the context of the
developed relation concept. Meta classes arise from the simple statement that every
thing is an object — hence classes should be objects as well. Hence, a class A is an ob-
ject, and should therefore be an instance of aclass. This classis called the meta-class of
A. This is again an object, hence there must be a meta-meta-class, which is an object,
hence, ... For our purpose it is sufficient to consider the class and the meta-class.

In our relation implementation, Relation have instances, which we throughout this sec-

COT/e-04-V1.0
Page 23 of 32

Centre for
Object Technology

tion has called association objects. The Relation class is an object. This object is what
we refer to when we talk about the relation.

association
object «nst» q Relation «nsp p| Meta-Relation

field1 elements (Relation class)
field2

The above figure illustrates the object and class role of the class Relation. Classes are
indicated in gray boxes, and objects in white, with rounded corners. An association
object is an instance of (indicated by the label «inst») the Relation class, and each asso-
ciation object has two variables, fieldl and field2. Relation is also an object, which is
an instance of Meta-Relation®. The relation object contains all the elements, that is all
the association objects that make up this relation.

|

elements (Works_for

association _ _
object st > Relation anst? Meta-Relation
field1 elements (Relation class)
field2
T A

i

i

i
Works_for _ _ I
assoc. object | ™" q Works_for anst p| Meta-Works_for

Foeld]
field?

In Smalltalk, each class has a unique meta-class, so no two classes are instances of the
same meta-class. The inheritance hierarchy of the meta-classes follows that of the
classes. Thisis easy to handle, as the meta-classis created automatically when the class
is created. We use this property in our implementation when we create Relations. A
Relation like “Works for” is created by making a subclass of Relation. Works for as-
sociation objects will have two fields, because Works for is a subclass of Relation, and
the Works for class-object will have its own elements, which are again the elements
that make up the Works_for relation.

By creating Works for as a subclass of Relation (shown using the bold arrow), the
meta-class is created automatically. The effect is that association fields and elements
are inherited (indicated using italics). The method named:relating:to: Creates a new sub-
class when send to the Relation object as seen edlier:

Relation named: #WorksFor
relating: #(employee Person)
to: #(employer Company)

Thereis several ways to represent relations, but the initial representation chosen is that

* In Smalltalk terminology, this classis usually written “Relation class’ rather then
Meta-Relation. However, we find it easier to consistently refer to it as the meta-class it
is.
COT/e-04-V1.0
Page 24 of 32

Centre for
Object Technology

we use a Set of relation-objects.
7.3.1 Implementation of special access methods

The genera technique used to implement the special access methods is the possibility
to add new methods to a class at run-time. When we have created the new relation
(e.g. Works for), we can add new methods to it by calling the compile: aString classified:
aCategory method. The string must be a string representing a method in legal Smalltalk
syntax; a method will then be added to Works for. The methods added are redlly just
access methods, which provides aternative names, e.g. employee rather than field1.

We have provided a division of labor, in that all actual work is done in methods in Re-
lation and Meta-Relation. An aternative would have been to compile the actual meth-
ods into each relation class, but that seems to miss the point of reuse and sharing.

7.3.2 Afewother loose ends

There are a number of methods, which should be defined for most Smalltalk objects,
and which have nothing to do with relations.

» It is practical to be able to print both relation-objects and entire relations. Relation-
objects can be printed as: “<obj1, obj2>"". Thisis quite sSimple because we will assume
that both obj1 and obj2 are able to print themselves. To print an entire relation, we
must take into considerations that it can be large, and should therefore not print all
elements. The relation is considered a set of associations, and could be printed as:
“RelationName: {<al,b1> <a2,b2> ...}, where we after some n (currently 20), will just
print three dots and stop.

* In order to make the relations display right in the browser we need to redefine the
definition method. This is a technical detail, which has to do with the fact that class
definitions are not stored as text (as methods are), but are pretty printed on demand.
Thus, we need relations to pretty print right.

COT/e-04-V1.0
Page 25 of 32

Centre for
Object Technology

8 ORACLE IMPLEMENTATION

We will examine how to implement the ideas of Rumbaugh in a relational database. We
use Oracle 8 with its new object oriented features to see how close we can come to
implement Rumbaugh’s model.

8.1 CREATING CLASSES

The classes in the model maps directly to a table in a relational database. This is well
known when we implement a data model in modern systems. In the new object-
relational databases like Oracle 8, we would though create tables using object types
instead of the traditional way of using simple datatypes for the table columns. By using
object types we also get the possibility of adding instance methods for the Person class.
The following statements creates the Person class

create or replace type Person_Type as object (

Name varchar2(50)

-- other attributes

-- Person instance methods could be added here as well
)i
create table Person of Person_Type;

8.2 CREATING RELATIONS

When we implement a traditional data model in Oracle, we usually transform the rela-
tions depending on cardinalities. If it is a many-to-many relation, it is transformed to a
table containing foreign keys as references to the tables representing the participating
entities. A one-to-one or one-to-many relation could be implemented the same way
though because of performance considerations they are usually implemented as foreign
keys in the participating tables themselves.

The same strategy is generally used when implementing an object model in a relational
database.

In this report, we have argued that relations are an important abstraction mechanism in
the implementation as well so we will implement the relations in the model as tables in
Oracle.

A table contains tuples of related values and it is well suited to implement a relation.
An interesting question is whether a relation has identity. At present, we haven't re-
searched this issue in detail but it affects how we should implement the relationships
I.e. whether we should use an object type or not. Seen from the programmers stand-
point there isn't much difference in how relations are accessed through SQL-
statements but we assume it will give more possibilities in the procedural programming
if we use object types. It isthen possible to add methods to the relation object type and
it is easier to refer to a relationship in the code. Another argument could be that we
want to implement the relations at the same level as the classes.

We will therefore use an object type for the relationships and implement the relations in
amanner similar to the implementation of classes.

COT/e-04-V1.0
Page 26 of 32

Centre for
Object Technology

Rumbaugh creates the Works_for relation with the syntax

RELATION Works_for (employee: Person, employer: Company)
In the Oracle implementation, thisis equivalent to the statements

create or replace type Works_for_Type as object (
Employee ref Person_Type,
Employer ref Company_Type);

create table Works_for_Rel of Works_for_Type;

8.3 ACCESSING RELATIONS

To access the relations we need functionality to add and remove associations and also
to query and select elements. The SQL language implementation in Oracle provides
access to the relation through the SELECT, INSERT, UPDATE and DELETE state-
ments. One could stick with these statements, as they are indeed very flexible to use for
accessing arelation.

As another approach, we will present an implementation of access methods that is
close to the examples of Rumbaugh. In this implementation, we meet some of the
limitations of the current release of Oracle 8. Though Oracle 8 supports objects with
attributes and methods, the methods cannot use statements, which modifies the data-
base tables such as the INSERT, UPDATE and DELETE statements. In general the
methods are not suited for class methods but are rather intended for instance methods.

We will instead follow a good practice using Oracle packages to encapsulate function-
ality for each relation. Packages provides some powerful object-oriented features as
described in [5]. For each relation we create a package with the same name as the rela-
tionitsalf. It will then look as if the package methods (procedures and functions) really
belong to the relation though it is only by naming convention it is achieved.

When using the package solution we should consider if we only want access to the re-
lation through the package methods and in that case establish access rightsto secureit.

8.3.1 Adding associations
Rumbaugh use a syntax for adding associations like in the example

Works_for.Add(Allan, RAMB@LL)

If Allan and RAMB@LL are known objects at runtime, the equivalent INSERT state-
ment in Oracleis

insert into Works_for_Rel values (Works_for_Type(Allan, RAMB@LL));
To select the objectsin the INSERT statement it would instead look like

insert into Works_for_Rel
select ref(p), ref(¢) from Person p, Company ¢
where p.Name = 'Allan' and c.Name = 'RAMB@LL";
We encapsulate the INSERT statement in an Add method by creating the Works_for
package like
COT/e-04-V1.0
Page 27 of 32

Centre for
Object Technology

create or replace package Works_for as
procedure Add(AnEmployee ref Person_Type,
AnEmployer ref Company_Type);
-- Other Works_for methods
end Works_for;
create or replace package body Works_for as
procedure Add(AnEmployee ref Person_Type,
AnEmployer ref Company_Type)
is
begin
insert into Works_for_Rel
values (Works_for_Type(AnEmployee,AnEmployer));
end Add;
-- Other code for Works_for methods
end Works_for;

We could then use the following code to add the relationship that Allan works for
RAMBOQLL.

declare
Allan ref Person_Type;
RAMB@LL ref Company_Type;
begin
select ref(p) into Allan from Person p where p.Name = 'Allan’;
select ref(c) into RAMB@LL from Customer ¢ where c.Name = 'RAMB@LL";
Works_for.Add(Allan, RAMB@LL);
end;

8.3.2 Removing associations
To remove associations we use the DELETE statement

delete Works_for_Rel w where w.Employee = Allan and w.Employer = RAMB@LL;
or

delete Works_for_Rel w
where w.Employee.Name = ‘Allan” and w.Employer.Name = ‘RAMB@LL’;

depending on whether Allan and RAMB@LL are known objects at runtime.
The Remove method in the Works_for package is straightforward

create or replace package body Works_for as
procedure Remove(AnEmployee ref Person_Type,
AnEmployer ref Company_Type)
is
begin
delete Works_for_Rel w where w.Employee = AnEmployee
and w.Employer = AnEmployer;
end Remove;
-- Other code for Works_for methods
end Works_for;

The Remove method is called the same way as the Add method.

COT/e-04-V1.0
Page 28 of 32

Centre for
Object Technology

8.3.3 Membership testing

To test for membership we use the SELECT statement. The result can be given as
Boolean, or we can handle a found or not found result, which is dightly smpler to

code.
The expression to test whether Allan works for Aalborg University

Work_for.Test_member(Allan, Aalborg University)
can be written asa simple SELECT statement
select * from Works_for_Rel w

where w.Employee.Name = ‘Allan’
and w.Employer.Name = ‘Aalborg University’;

The code then needs to check for aNOTFOUND exception.

We could consider to write a Test_ member method in the Works for_Type. Since the
method is a method for the relation (class method) in contrast to being a method for
the relationships (instance method) the correct place for the method is in the relations

package. We then implement the Test_member method as

create or replace package body Works_for as

function Test_member(AnEmployee ref Person_Type,
AnEmployer ref Company_Type) return boolean

is
result boolean;
dummy number;
cursor TestCur is
select 1 from Works_for_Rel w

where w.Employee = AnEmployee and w.Employer = AnEmployer;

begin
open TestCur;
fetch TestCur into dummy;

if TestCur%FOUND then
result := TRUE;

else
result := FALSE;

end if;

close TestCur;

return result;
end Test_member;
-- Other code for Works_for methods
end Works_for;

An example of testing whether Allan works for Aalborg University using the

Test_member method could be written as

COT/e-04-V1.0
Page 29 of 32

Centre for
Object Technology

declare
Allan ref Person_Type;
Aalborg ref Company_Type;
begin
select ref(p) into Allan from Person p where p.Name = 'Allan’;
select ref(c) into Aalborg from Company ¢ where ¢.Name = 'Aalborg University';
if Works_for.Test_member(Allan, Aalborg) then
-- do something
end if;
end;

8.34 Querying

The SQL language is very flexible for querying. After all SQL was designed to be a
guery language and to query for relationship we can use the SELECT statement in
many different ways. It will be too overwhelming to show all the variations in this
context so we only show the smple querying here where we query the set of objects
which are related to a given object based on a given role.

To find the employees who works for RAMB@LL we use the SELECT statement

select Employee from Works_for_Rel w
where w.Employer.Name = 'RAMB@LL";

We will provide a getEmployees method, which encapsulates this query and can be
caled like

Works_for.getEmployees(RAMBZLL)

The method returns a set of objects i.e. Persons and we need to create a type to ex-
press it

create or replace type Person_Set as table of ref Person_Type;
We can then implement the method in the relation package

create or replace package body Works_for as
function getEmployees(AnEmployer ref Company_Type) return Person_Set
is
Employees Person_Set;
n binary_integer := 0;
begin
Employees := Person_Set();
for Emp in (select Employer from Works_for_Rel w where w.Employer =
AnEmployer)
loop
n:=n+1;
Employees.Extend;
Employees(n) := Emp.Employee;
end loop;
return Employees;
end getEmployees;
-- Other code for Works_for methods
end Works_for;

To call the getEmployees method we use code like

COT/e-04-V1.0
Page 30 of 32

Centre for
Object Technology

declare
EmployeesInRAMB@LL Person_Set;
RAMB@LL ref Company_Type;
begin
select ref(c) into RAMB@LL from Company ¢ where c.Name = 'RAMB@LL';
EmployeesInRAMB@LL := Works_for.getEmployees(RAMBZLL);
end;

A similar method getEmployers would also be implemented.

Finally we will provide methods in the Person and Company object types which will
return the set of related objects through the Works for relation. The methods will use
the previoudly implemented query methods. In the Company_Type we will implement
an Employee method which uses the getEmployees method.

create or replace type Company_Type as object (
Name varchar2(50),
-- other attributes
member function Employee return Person_Set,
-- Other Company instance methods could be added here as well
pragma restrict_references(Employee, WNDS, WNPS)
)

create or replace type body Company_Type as
member function Employee return Person_Set is
result Person_Set;
ref_self ref Company_Type;
begin
select ref(s) into ref_self from Company s where value(s) = self;
result := Works_for.getEmployees(ref_self);
return result;
end Employee;
)
Notice the pragma informs that the method will have no side effects on the database
tables.

We can call the access method in an example like

declare
EmployeesInRAMB@LL Person_Set;
RAMB@LL Company_Type;
begin
select value(c) into RAMB@LL from Company ¢ where c.Name = 'RAMB@LL';
EmployeesInRAMB@LL := RAMB@LL.Employee();
end;

Notice however that the access method cannot be used in a SELECT statement like

select c.Name, c.Employee() from Company ¢;

because the method returns a set of objects. We have to code this kind of code in a
different way, and we really would like some extra support for thisin Oracle.

COT/e-04-V1.0
Page 31 of 32

Centre for
Object Technology

9 REFERENCES

[1]

A. V. Velho and R. Carapuca. Attribute: A Semantic and Seamless Con-
struct. http://albertina.inesc.pt/ESW /documents/som-tol.

J. Rumbaugh. Relations as Semantic Constructs in an Object Oriented
Language, Proceedings of OOPSLA’87. Pages 466-481.

A. V. Shan,]. Rumbaugh, J. H. Hamel, and R. A. Borsari. DSM: An Ob-
ject-Relationship Modeling Language. Proceedings of OOPSLA’89. Pages
191-202.

P. Coad, Object-Oriented Patterns, 1992, Communications of the ACM,
September 1992, pp. 152-159

Oracle Unleashed, Sams Publishing, chapter 18.

http:/ /technet/oracle.com/odp/public/connect/sams/html/oun.htm

S. T. March and S. Rho. A Semantic Object-Oriented Data Access Sys-
tem. http://www.misrc.umn.edu/wpaper/wp96-05.htm

J. Olsson, K. H. Nielsen, K. Osterbye, A. R. Lassen. Objektorienteret
Analyse og Design af udvalgte dele af STADS. COT /4-03. (in Danish)

COT/e-04-V1.0
Page 32 of 32

