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One of the major objectives of reservoir evaluation is to predict future production of
hydrocarbon from the reservoir under study. In an idealistic setting with everything
completely known it may be expressed by:

(1) = w(r(x),p(t)); telto, o) (1)
with

e ¢,(t) being the production characteristics of interest. It will be a function of
time, ¢, from production start. The subindex, p, indicates that the production
will depend on the recovery strategy, ie development plan and depletion strategy.

e r(z) being the initial reservoir characteristics prior to production. It will of
course be a function of location, x, in the reservoir. It represents the variability
of porosity, various permeabilities and fluid saturations in the reservoir.

e p(t) being the recovery variables defining the development variables specified
through the well locations and production constraints, and the depletion variables
defining the injection strategy. This will be time dependent.

e w(.,.) being the set of differential equations representing fluid flow. These phys-
ical processes are assumed to be correctly modeled and they link the reservoir
characteristics and recovery variables to the production characteristics for the
future. This function will usually be based on Darcy’s Law and expressions for
conservation of mass and is represented by reservoir production simulators in the
petroleum sector.

The production characteristics, g,(t), is the variable to be determined, hence the ob-
jective of the study. The reservoir characteristics prior to production, r(z), is largely
unknown but it is being explored through seismic surveys, exploration wells and pro-
duction testing. The reservoir characteristics is given by nature and will remain a
partial secret to man. The recovery variables, p(t), however, is completely controlled
by the reservoir management and is used to optimize production. The fluid flow model,
w(.,.), is for simplicity assumed to be completely known in this paper. Improvement
in the numerical models for fluid flow is an important and intensive area of research.
Inaccuracy in the fluid low model is probably one of the most important contributions
to the error in the estimates presented in this paper.



The component containing uncertainty is the reservoir characterization since it is ne-
glected the uncertainty due to our limited understanding of fluid flow. In order to
represent this uncertainty, the initial reservoir characteristics are assigned a stochas-
tic interpretation, and denoted R(z). The actual uncertainty is modeled by the cor-
responding probability density function, pdf, denoted fr(r(z)). This pdf assigns a
probability to each outcome r(x) of the reservoir characteristics. The aim of stochastic
reservoir description is to define fr(r(z)) and to estimate model parameters involved in
it. This is the only stochastic component in the evaluation and expression (1) appears
as:

Qp(t) = w(R(2),p(1) ;  telto, ) )
with @),(t) being the production characteristics now being stochastic due to the depen-
dence on the stochastic reservoir characterization. Note that since @),(t) is stochastic a
corresponding pdf, fo,(gy(1)), exists. This pdf can in principle be determined by tak-
ing fr(r(z)) through the function w(.,.). Since w(.,.) consists of a set of differential
equations, this will entail solving stochastic differential equations. Very few analytical

results are available for this and a Monte Carlo sampling approach remain the only
feasible way to assess fg,(¢p(t)). See e.g. Holden and Risebro (1991)

The definition of the stochastic reservoir characteristics must be based on two types of
information:

e geological inference information, containing general geological knowledge about
the type of reservoirs present. Moreover, observations from representative out-
crops and comparable reservoirs are included. This type of information can be
considered to provide general understanding of the reservoir characteristics.

e reservoir specific information, containing observations made at specific locations
in the reservoir. This includes seismic data, observations and measurements in
wells, well test data and production history. This type of information is specific
to the reservoir under study and is denoted, O. It will be stochastic since the
reservoir characteristics are considered to be stochastic, and a stochastic model
for the sampling procedure must be defined through the pdf for(o|r(z)). This
entails specifying the probability model for the observation whenever the reservoir
characteristics were completely known. Let the observations actually made be
denoted o.

The geological inference information must be used to defined the stochastic model for
the reservoir characteristics through the pdf fr(r(z)). The model of interest, however,
is the one conditioned on the reservoir specific information. The conditional reservoir
characteristics are (R(x)|O = o), with associated pdf frjo(r(z)|o). Realizations from
this model will ensure that the reservoir specific information is honored according to
the sampling model for(o|r(z)) since from Bayes formula

frio(r(z)|o) = cfr(r(z)) folrlolr(x)).



In the GRUS-study, see Lia et al (1995) an extensive evaluation of the production
uncertainty was made. One realization from the conditional reservoir characterization
model is presented in figure 1. Three petrophysical variables are displayed: porosity,
horizontal absolute permeability and irreducible water saturation. The model contains
structural components defining the outline of the reservoir and the six formations being
present. Moreover, most formations contain facies models underlying the petrophysical
variables. Note that in the figure the observations in the wells are reproduced.

By imposing the conditional reservoir characteristics (R(z)|O = o) on expression (1),
one gets:

(@Qp(1)|0 = 0) = w ((R(2)|0 = o), p(1)) ; te[to, o) (3)
with (@Q,(t)|O = o) being the stochastic production characteristics conditional on the
reservoir specific information available. An increasing amount of reservoir specific in-
formation will tend to reduce the uncertainty in the production characteristics. The
associated pdfis fg,j0(gp(t)]0), and the ultimate objective of the study is to determine
this pdf. As mentioned previously, few analytical results is available for this problem,
hence the assessments has to be made by Monte Carlo simulation. This entails: gener-
ate a set of realizations from frjo(r(z)|o), displays of one realization being presented
in figure 1; take each realization through the set of differential equations represented
by w((r(z)|O = o), p(t)) to obtain a set of realizations of production characteristics
representing fo j0(g,(1)|o). In figure 2, a set of such realizations is presented. The re-
sults are produced in the GRUS study and the characteristics are total oil production
with time. The corresponding best prediction for the production characteristics at a
specific time ¢t = ¢’ is the expected value at that point in time:

E{Qy(1)|0 = o}

with associated prediction variance

Var{@,(1")|0 = o}

The best prediction can be estimated by the average of the set of realizations being
generated. The prediction variance can be estimated by the empirical variance of the
realizations.

Note in particular that:

E{Q,(1]|0 = o} = E{w ((R(z)|O = o), p(t))}
7 wlE{R(z)|0 = o}, p(t)]

with the inequality being true due to the non-linearity of the fluid flow equations rep-
resented by w(.,.). Hence the expected production characteristics will not be equal to
the predictions made by solving the fluid flow equations on a reservoir characterization
provided by the best guess based on available information.



STOCHASTIC RESERVOIR DESCRIPTION

The initial reservoir characteristics will be largely unknown and is given a stochastic
interpretation. The characteristics, R(z), must contain information sufficient for ac-
tivating w(.,.) in order to compute ¢,(¢). One may say, that the reservoir variables
needed in the description are the ones required by the fluid flow model in order to com-
pute the production characteristics. This will of course vary from reservoir to reservoir
dependent on the geology and hydrocarbon phases present. In an oil reservoir the
reservoir variables needed will typically be:

R(z) = (®(x), Kn(x), Ky(2), Swir(x), Sor(x), Sow(z),T)

with ®(z) being spatial distribution of porosity; K,(x) and K,(x) being spatial dis-
tribution of vertical and horizontal absolute permeability respectively; S, () being
spatial distribution of irreducible water saturation; S, () being spatial distribution of
residual oil saturation; S,,(z) being spatial distribution of initial oil/water saturation;
and T being a list of other non-spatial variables like standardized relative permeability
curves, fluid properties etc. All these variables are, as indicated by the capital letters,
in principle stochastic variables since they will not be completely known. In practice,
the geoscientist must judge whether the uncertainties in the individual variables will
have significant influence on the overall uncertainty. If the influence is neglectable the
model can be simplified by treating these variables as constants.

The stochastic reservoir description entails assigning a probability model to the stochas-
tic reservoir variables, R(z). This must be done by defining the associated probability
density function, pdf, fr(r(z)). The pdf specifies the probability associated with an
arbitrary realization of the reservoir variables, r(x). The reservoir geology usually ap-
pear as complex spatial patterns and simple spatial stochastic models like Gaussian
random functions will normally not be representative. The stochastic model for reser-
voir description should be built as a two-stage model, see Damsleth et al (1992). The
stochastic underlying model should contain the large scale architectural elements of
the reservoir, and can be divided into a structural, sedimentary and fluid model. Su-
perimposed on this architecture is the stochastic reservoir variable model containing

the small scale variability of R(x) = (®(z), Kin(z), K,(2), Swir(2), Sor(2), Sow(x)).

The stochastic underlying models are:

e the structural model containing two modules: geometry and fault module. The
geometry module include models for the formation border horizons dividing the
reservoir into a number of formations each of them created by one sedimentary
process. Examples are fluvial, deltaic, shallow marine and turbidite formations.
The border horizons can be modeled by Gaussian random functions and the mod-
els can integrate information from observations in wells, seismic data on reflectors



and subjective guesses on formation thickness. Gaussian random functions are
defined as spatial generalization of the linear Gaussian theory. In Abrahamsen
et al (1991) a stochastic structural model, including seismic depth conversion
is presented. In figure 3, a predicted formation thickness map with associated
uncertainties is displayed.

Moreover the location of other large scale features as laterally extensive shale
barriers may be included in the geometric module.

The fault module includes both large scale fault zones identifiable from seismic
data and sub-seismic fault patterns. The fault zones will have offsets determined
by the stochastic geometry module, while the individual faults in the zone cannot
be identified. In Omre et al (1992), a Marked point random field model is used
for modeling these fault units. This type of model defines geometrical objects
and models their geometries and interactions in a probabilistic manner. In figure
4 a top view and a front view of a fault zone realization are presented. The model
was used for evaluating the flow characteristics a cross a fault zone. The sub-
seismic fault pattern in the reservoir matrix can also be modeled stochastically.
In Munthe et al (1993), a Marked point model was used for this purpose. In
figure 5, a realization of such a fault pattern based on geological understanding
of fault processes and seismic data is presented.

The stochastic modeling of sub-seismic fault patterns appears as a very interesting
and challenging problem with considerable impact on the production character-
istics of the reservoir.

the sedimentary model defined within each formation and containing the stochas-
tic model for facies architecture generated by the sedimentary processes. A large
variety of models are need to cover the possible facies patterns, of course. In the
following, the mostly used model formulations are reported.

Markov random fields are parameterized by specifying the probabilities of the
combinations of facies neighborhoods. In Falt et al (1991) the facies architecture
of a reservoir of coastal marine origin was modeled by Markov random fields.
Eight facies types were involved in the model, and a couple of cross sections from
one realization are displayed in figure 6. Note how the facies interact to fill the
total reservoir without defining a background facies. Conditioning on well obser-
vations is simple to perform.

Truncated random fields are generated by discretization of a continuous realiza-
tion of a Gaussian random function. The cut-offs for the discretization are such
that the proportions of the individual facies are reproduced. In Matheron et al
(1987) this approach was used to model the facies architecture of a fluvial-deltaic



reservoir, actually an extensive outcrop. Three facies types where defined: sand-
stone, shaly sandstone and shale. In figure 7, a cross section from a realization
is presented. Note that the facies transitions are ordered with shale content.
The lateral variations of facies proportions are introduced by the geoscientist as
parameters. The conditioning on well observations can relatively simply be made.

Indicator random field is defined by assigning an indicator to each facies type and
then to model the correlations between these indicators. In Suro-Perez and Jour-
nel (1990) the indicator model was used to model various shale lenses and other
barriers in a sandstone reservoir. Six different facies types, including sandstone,
was used. A cross section of a realization of the facies architecture is shown in
figure 8. Note the frequent transitions from one facies to the other. The condi-
tioning on well observations is straight forward.

Marked point random fields is based on a probabilistic model of geometrical
objects, their size, orientation and relative positioning. The approach is often
termed object based models. In Clemetsen et al (1990) and Egeland et al (1993)
Marked point random fields are used for modeling river channel geometries sedi-
mented in fluvial environments. Four different facies are modeled: fluvial plains,
river channel, sheets plays and barriers In figure 9, a horizontal cut through a
realization of a fluvial reservoir is displayed. Note how the various facies interacts
in a hierarchical manner. The conditioning on well observations can be difficult
unless clever parameterizations of the objects are used.

In addition to stochastic models for the large scale facies architecture, models for
sub-facies as shale and calsite sheets are required. This was actually the initiation
of heterogeneity modeling as presented in Haldorsen and Lake (1984). They used
a simple Marked point random field model for representing shale units in a sand
matrix, see figure 10. This shale model is extended and refined in order to suit
more complex conditioning by well observations, see Syversveen and Omre (1994)
see figure 10. These models can be used for other small scale facies types like
calsite segmentation as well. Shale horizons which location should be modeled
as a part of the structural model can be represented by two dimensional Markov
random fields as reported in Hgiberg et al. (1990). In figure 11, a realization
of the shale horizon is presented. The shale is nonexistent in some areas and
the thickness varies. A similar approach can be used for other facies with large
lateral extensions, like for example calsite sheets, see Omre et al (1990).

The facies architecture is expected to have considerable impact on the produc-
tion characteristics of the reservoir. Stochastic modeling of discrete variables in
a spatial setting is difficult, and the need for conditioning on well observations
make the problem even more challenging.



e the fluid model represents the hydrocarbon saturations and phase properties.
The hydrocarbon contact surfaces are usually modeled spatially, Gaussian ran-
dom functions are most frequently used. In faulted reservoirs individual models
in each fault segment can be used, see Abrahamsen et al. In figure 12, a realiza-
tion of a hydrocarbon in place map over a segmented reservoir is displayed.

e The fluid model concerns presence or absence of hydrocarbon in the individual
segments and is therefore of utmost importance in reservoir evaluation. Surpris-
ingly few thorough stochastic studies of this problem can be found in literature
and many challenging problems are still to be worked out.

The stochastic reservoir variable model represent the variables directly involved in the
fluid flow differential equations. Their model will be dependent on the realization of the
underlying model in the sense that the latter determines the parameters in the reservoir
variable model. The large scale fault pattern will for example define the location of
fault sealing if this is assumed to be present; the expected porosity will normally be
higher in sand facies than silt facies; there will be an upward fining trend in river beds
in fluvial environments; the variance of permeability is smaller in coarse sand facies
than shaly sand facies; the saturations are differently defined above and below the
hydrocarbon contact levels; etc. Most frequently Gaussian random functions are used
as models for the reservoir variables superimposed on the underlying models, see Falt
et al (1991). In figure 13, the simulated permeability values superimposed on the facies
architecture in figure 6. In cases where no underlying sedimentary model us used, ie.
the same facies is used for the total formation, Fractal random functions and Indicator
random functions have been used. In figure 14 and 15 examples of these from Hewett
(1986) and Journel and Alabert (1988) are presented. In Doyen the reservoir variables
are simulated with support of seismic data. The following table gives an overview over
the most used stochastic random functions used in reservoir models:

Structural Sedimentary Fluid Petrophysics
Horizons: Trunc. Gaussian | Gaussian Gaussian
Gaussian Markov Discrete Fractal
Faults : Indicator Indicator
Marked Point Marked Point

In a case study it is in addition to using the stochastic models necessary to include:

e The reservoir is usually described in a much finer grid in the stochastic model
than it is possible to use in the fluid flow model. The geologists prefer to model
properties on the meter scale while the blocks in the fluid flow model typically
is 10-100m scale. It is therefore necessary with a change of scale or an upscaling
of the reservoir parameters. Methods are typically based on the same fluid flow
model but with simplified local boundary conditions, see e.g. Holden and Lia

(1992)



e The fluid flow model traditionally takes most of the time of the geoscientists and

the CPU time.

e The model must then be fitted to the production data. This is called history
matching. It is based on repeated use of the fluid flow model with perturbed
input data. See e.g. Eide et al. (1994)

e It is very important to validate the model. The model is based on very many
different and possibly conflicting data. There are many different validation tech-
niques e.g. visual inspection, different statistics, and matching production data.

EXAMPLE

In the GRUS-study previously mentioned, see Lia et al (1995), an oil reservoir inspired
by the Brent group of the Veslefrikk field in the Norwegian sector of the North Sea, see
Pedersen et al (1994) and Damsleth and Holden(1994), was evaluated. This is a part
of the PROFIT initiative in Norway. The objective was to evaluate the impact of the
uncertainty in the reservoir description on the total production uncertainty. In figure
1, the reservoir variables of one realization of the stochastic reservoir description model
are displayed. The model is in three dimensions but only a fence diagram is shown.
The actual variables are [r(z)|O = o] = [(p(x), ko(2), kn(2), sSwir(2), sor(2))|O = 0]
Only three of these variables are shown in the figure. The reservoir contains five major
formations, from top to bottom: Tarbert, Ness, Etive, Rannoch and Oseberg.

The structural underlying model contain seismic depth conversion to two seismic reflec-
tors, but also stochastic models for the formation borders and two major shale horizons
in the Oseberg formation were included. A Gaussian random function model was used.
Hence the uncertainty in the overall geometry of the reservoir was modeled. Note,
however, that in the figure the displays are relative to base Oseberg and are hence not
reflecting the geometry correctly. The fault module of the structural model did only
consider large scale fault zones identifiable on seismic.

The sedimentary model was activated within each formation segment. Note however
that it is the reservoir variables themselves be indirectly observed on figure 1. The
shallowest formation, Tarbert, consist of marine sand sheets deposited during progra-
dation in times of an overall regression. It is very thin and contains only a minor part
of the resources. A simple one facies model with a barrier at the bottom was used.
The next formation, Ness, is deposited as river channels facies are modeled as Marked
point random fields with predominant directions approximately 30° off the direction of
the fence diagram in the figure. The fluvial plain is considered to be almost imperme-
able. The high heterogeneity can be observed in the figure. The Etive and Rannoch
formations are deposited in a high energy beach or barrier bar complex and lower ma-
rine delta respectively. The heterogeneity is extremely high and no underlying facies
structure can be identified. Hence the underlying sedimentary model contain one facies
in each of the formations only. The deepest formation, Oseberg, was rapidly deposited



by various sediment gravity flows from a continental area. The formation is thick and
constitutes excellent reservoir properties, in spite the content of some shale and cal-
site segmentation. An underlying facies model containing three facies, sand shale and
calsite, was used. The sand facies was considered a background facies overlayed by
shale and calsite facies. The shale facies was located in the two major barrier horizons
modeled in the structural model. A Markov random field model was used and the shale
horizons can be identified, one thin one close to the top of Oseberg and one thicker one
close to the bottom. The calsite sheets are spread all over Oseberg although with a
higher frequency to the north-east. A Marked point random field model was used. Note
that the underlying facies model do reproduce the facies observations made in the wells.

The fluid model consisted of three pressure regimes. One in the Tarbert formation,
one in upper Ness and the major Brent regime covering lower Ness, Etive, Rannoch
and large parts of Oseberg. The corresponding oil/water contacts were modeled as
horizontal with the depths.

The stochastic reservoir variable model defining
(B(2)|0 = 0) = [(®(2), Ky(2), Swir(2), Sor (2))|O = 0]

is conditional in the stochastic underlying model defined above. The reservoir variables
are defined with no spatial heterogeneity in Tarbert, in Ness each of the facies are as-
signed values without spatial variability also. Etive and Rannoch is modeled with high
spatial variability and distinct horizontal anisotropy. Moreover, Etive has a vertical
trend with best flow properties in the middle, while in Rannoch the vertical trend has
best flow properties on the top. In Oseberg, the sand facies is assigned excellent reser-
voir properties without spatial variability while shale and calsite are considered to be
impermeable. Gaussian random function are used as model for the reservoir variables
in all facies. Moreover, a stochastic model for the permeability, or sealing transmissi-
bility, across the fault zones defined in the structural model was defined. The initial
phase saturations was defined to be physically perfect saturations of oil and water in
the respective phase zones. All observations in wells were reproduced. Note that it is
a realization of the reservoir variables

(R(2)0 = ) = (®(x), K (), K. (2), Suir (), Sur ()]0 = 0)

which is displayed in figure 1. The underlying facies model can only be indirectly iden-
tified.

The GRUS-study took the realization of the reservoir variables, (r(z)|O = o), through
a rescaling procedure to prepare an input suitable for the fluid flow simulator, w(.,.). A
set of recovery variables, p(t), including seven injecting and four producing wells with
water injection in the water zone was defined. Based on this the predicted production
characteristics, (¢,(1)|O = 0) = w[(r(x)|O = o), p(t)], can be obtained by simulation of
fluid flow. By generating more realizations of the reservoir variables more realizations



of the predicted production characteristics can be obtained. In figure 16, a collection of
57 such realizations for predicted characteristics production over 30 years is presented.
The characteristics displayed are: accumulated oil production; oil production rate and
water cut. This represents the uncertainty in the predictions. An interesting feature
of the GRUS-study is that simulation of reservoir descriptions through simulation of
fluid flow to obtain predictions of production is performed completely automatically,
without any human interference. Each realization all the way required approximately
5 cpu-hours on a medium size work station.

Additional 200 full simulations were performed. With so many simulations it is pos-
sible to explore the model quite thoroughly. Figure 17 shows the probability densities
for total production, recovery and recovery of mobile oil. It is possible to find which
input parameters which contributes most to the uncertainty in production. In this case
study the sealing of the large faults contributed most to the uncertainty. Figure 18
shows how important this parameter is in this case study.

FUTURE TRENDS

The need for assessing uncertainties in order to make better and more robust reservoir
management decisions will be emphasized in the future. This entails ensuring that all
available information is used in a balanced manner in the reservoir evaluation. Focus
will hopefully be on construction of the stochastic reservoir models and on estimating
their parameters reliably. The representativity of the model governs the representativ-
ity of the results. It will be required that the models can be automatically explored on
a computer, but this is merely a technical problem.

In the near future, user friendly computer systems will be available to help geoscien-
tist in this modeling task. These systems will bridge the between existing systems for
well log interpretation, seismic data interpretation etc. and the reservoir production
simulations.

Special topics which required more thorough work are:

e assessment of uncertainties in hydrocarbon in place by refining the fluid model.
It should be possible to pin down the available resources much better than one
does today.

e modeling of sub-seismic fractures and faults. Their influence on fluid flow is large,
and their presence can change the anisotropy directions of the reservoir which is
crucial when EOR is used.

e improved use of the available data e.g. seismic, well test, outcrops, well data in
sedimentary modeling, particularly in modeling the facies architecture which has
large influence on fluid flow.



e use of production history in reservoir characterization. This is the familiar history
matching problem.

e tools for combining the different models and using the uncertainty information
for improving the reservoir management decisions.

e improvements in the fluid flow models.
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