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The Gaussian-type orbital and Gaussian-type geminal (GGn) model is applied to the water

molecule, at the level of second-order Møller–Plesset (MP2) theory. In GGn theory, correlation

factors are attached to all doubly-occupied orbital pairs (GG0), to all doubly-occupied and

singly-excited pairs (GG1), or to all orbital pairs (GG2). Optimizing the GG2 model using a

weak-orthogonality functional, we obtain the current best estimate of the all-electron MP2

correlation energy of water, �361.95 mEh. In agreement with previous observations, the GG1

model performs almost as well as the GG2 model (�361.26 mEh), whereas the GG0 model is

poorer (�351.36 mEh). For the barrier to linearity of water, we obtain an MP2 correlation

contribution of �463 � 5 cm�1.

I. Introduction

Since the early work of Hylleraas, it has been known that the

correlation energy converges very slowly with respect to

expansion of the orbital basis.1 In particular, if the orbitals

of the expansion are chosen in an optimal fashion, the error in

the correlation energy is proportional to N�1, where N is the

number of orbitals in the calculation.2,3 Exploiting the

smoothness of the convergence, it is possible to improve on

this convergence by extrapolation. A more fundamental solu-

tion, however, is to improve upon the underlying description

of the electrons by including the interelectronic distances

explicitly in the wave function.4,5

Over the years, a number of such explicitly correlated

techniques have been proposed. Of particular relevance to

our work is the Gaussian-type geminal (GTG) method, intro-

duced in 1982 by Szalewicz and coworkers.6–9 With this

model, a number of accurate second-order Møller–Plesset

(MP2) calculations have been carried out on small systems,

but applications to larger systems are difficult because of a

nonlinear optimization of variational parameters (geminal

centers and exponents) and the explicit evaluation of three-

electron integrals. An alternative technique is the R12 method,

introduced a few years later by Kutzelnigg and Klopper.10,11

Using a linear r12 correlation factor and avoiding many-

electron integrals through the resolution of the identity, R12

theory is applicable to large systems and has recently been

generalized to F12 theory, with correlation factors f(r12)

different from r12.
12

We here discuss an alternative model, which uses a mixed

Gaussian-type orbital (GTO) and GTG expansion,13 avoiding

the nonlinear optimization of the GTG method but otherwise

closely following the approach of Szalewicz and coworkers.6–9

In particular, we optimize the MP2 pair functions using their

weak-orthogonality (WO) functional, with an explicit evalua-

tion of three-electron integrals.14

As in F12 theory, GTO–GTG (GG) theory uses pair func-

tions that combine a traditional, orbital-based pair function

with an explicitly correlated part, consisting of orbital pro-

ducts multiplied by a correlation factor. However, whereas the

correlation factors in F12 theory are only multiplied on

products of two occupied orbitals (doubly-occupied pairs),

there are no such restrictions in GG theory. Instead, we have a

hierarchy of GGn models. In the simplest GG0 model, the

correlation factor is only introduced in doubly occupied pairs;

in the more general GG1 model, such factors are introduced

also in all singly-excited orbital pairs; finally, in the GG2

model, we attach correlation factors to all possible pairs, even

those that are doubly excited relative to the Hartree–Fock

description. In ref. 15, we applied these models to atoms and

diatomics, comparing their performance with orbital-based

MP2 theory and different explicitly correlated methods.

For an implementation of the GG0 and GG1 models in the

context of local MP2 theory, see ref. 16. In the present

paper, we present applications of MP2–GGn theory to the

water molecule.

II. Theory

In Møller–Plesset theory, the second-order energy E(2) may be

expressed in terms of the pair energies esij

Eð2Þ ¼
X

i�j
e1ij þ

X

i4j

e3ij ; e
s
ij ¼

s

1þ dij
hQusij jr�112 jfs

iji ð1Þ
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where the fs
ij are singlet (s = 1) and triplet (s = 3) products of

occupied molecular orbitals (MOs)

fs
ij ¼

1ffiffiffi
2
p ½jið1Þjjð2Þ þ ð2� sÞjjð1Þjið2Þ�; ð2Þ

and where the Qusij are pair functions usij made strongly

orthogonal to the occupied space {jk} by the projection

operator

Qð1; 2Þ ¼ ½1�Oð1Þ�½1�Oð2Þ�; O ¼
X

i

jjii hjij ð3Þ

The pair functions usij are symmetric and antisymmetric spatial

functions, multiplied by singlet and triplet spin functions

respectively. In the following, we concentrate on the spatial

part and assume the spin part to be given.

Following our previous work,15 the GGn pair functions are

constructed as traditional orbital-based pair functions supple-

mented with three different geminal expansions:

usij ¼
X

a�b
fs
abc

ab
ij;s þ

X

x�y

X

v

gsxy;vc
xy;v
ij;s ;

with xy 2 fkl; kq; pqg
ð4Þ

The first term is the traditional pair-function virtual orbital

expansion (VOE) and consists of products of virtual orbitals

fs
ab defined as in eqn (2). The second term is the expli-

citly correlated part, which is a linear combination of GTGs

gsxy,v, each taken as a product of fs
xy and a Gaussian corre-

lation factor (GCF) exp(�gvr212) with a fixed exponent gv:

gsxy,v = exp(�gvr212)fs
xy (5)

The GGnmodels differ in which GTGs are included in the pair

functions: in the simplest GG0 model, only GTGs with both

MOs occupied gskl,v are included; in the more flexible GG1

model, we also include GTGs with one virtual MO gskq,v;

finally, in the GG2 model, no restrictions are placed on the

MOs in the GTGs. Thus, in the notation GGn, n gives the

highest excitation level included in the GTG part of the pair

function.

The linear expansion coefficients of eqn (4) can be varia-

tionally optimized by minimizing the strong-orthogonality

(SO) functional

SOFs
ij ½usij � ¼

s

2ð1þ dijÞ
½hQusij jf ð1Þ þ f ð2Þ � ei � ej jQusiji

þ 2hQusij jr�112 jfs
iji�; ð6Þ

where the f(1) and f(2) are the Fock operators of electrons one

and two, respectively, and the ei are orbital energies. To avoid

the four-electron integrals that arise in the SO functional, we

replace it by the weak-orthogonality (WO) functional devel-

oped by Szalewicz and coworkers:6–9

WOFs
ij ½usij � ¼

s

2ð1þ dijÞ
½husij jf ð1Þ þ f ð2Þ � ei � ej jusiji

þ 2hQusij jr�112 jfs
iji

þ Dijhusij jOð1Þ þOð2Þjusiji�

ð7Þ

Here the removal of the strong-orthogonality operator in the

first term is compensated for by the addition of a penalty term.

The factor Dij of the penalty term is a level shift defined by

Dij = 1/2(ei + ej) � e1 + Z with e1 r ei and Z Z 0. Clearly,

this function penalizes valence pair functions more strongly

than core and core–valence pair functions, potentially yielding

pair energies which are too high. A modified WO penalty

function, designed to remedy this situation, was proposed by

Wenzel et al.8 We have not observed a poorer valence con-

vergence and have used the original WO in all calculations

reported here.

If the Hartree–Fock equations have been solved exactly

(that is, the orbitals are eigenfunctions of the operators f(i)),

then the WO functional gives an upper bound to the SO

functional, which, in turn, gives an upper bound to the exact

pair energy:

WOF s
ij[u] Z

SOF s
ij[u] Z eij (8)

In contrast to the SO functional, strong orthogonality is not

ensured when the pair function is optimized using the WO

functional: instead, orthogonality is introduced in the course

of the minimization of the WO functional provided that the

pair function usij is sufficiently flexible. If the pair function lacks

this flexibility, then the correlation energy becomes too high,

in agreement with eqn (8). This was observed for the GGn

models when we tried to replace the linear combination of

GTGs in eqn (4) with a linear combination of fs
xy and a fixed

linear combination of GCFs.14 Recently, it has been demon-

strated that the GG0 model may indeed give poor energies

when optimized with the WO functional.17 The GG1 and GG2

energies on the other hand converge very rapidly to the basis-

set limit, as shown in ref. 15.

III. Computational considerations

A. One-electron basis sets

In our calculations we use the standard correlation-consistent

basis sets cc-pVXZ of Dunning,18 with and without the

addition of diffuse and high-exponent functions. In addition,

we also use truncations of these basis sets, omitting orbitals of

high angular momentum. In such cases the orbital types

retained in the basis are given in parentheses after the basis-

set name. For example, in the basis cc-pVTZ(spd,sp) we have

omitted the f shell on oxygen and the d shell on hydrogen.

B. Two-electron basis sets

The GCF expansions of eqn (4) may be changed by adjusting

the exponents in each correlation factor exp(�gvr212) and by

changing the number of correlation factors included in the

expansion. Following our previous work,15 we use the set of

nine GCFs in which the exponents gv are taken from the even-

tempered sequence {1/9,1/3,. . .,729}.

To examine the contributions from the different GCFs to

the energy, we have carried out water calculations in the cc-

pVDZ and aug-cc-pVTZ(spd,sp) basis sets using GCF expan-

sions with up to nine terms. A level shift Z = 0.1 was used in

all calculations. The results are presented in Table 1.

As expected, the successive inclusion of more and more

GCFs lowers the energy monotonically. Since the GTGs are

primarily introduced to model the cusp region, we are

3378 | Phys. Chem. Chem. Phys., 2008, 10, 3377–3382 This journal is �c the Owner Societies 2008



particularly concerned with the convergence with respect to

the addition of high-exponent functions, noting that diffuse

GTGs are essentially orbital products whose contribution to

the correlation energy may be effectively recovered by the

traditional orbital expansion. From an inspection of Table 1,

we conclude that, with all nine GCFs included in the pair

function, the description of the Coulomb hole is converged to

within 0.1 mEh. The conclusions drawn here for water are

similar to those for neon in ref. 15.

C. The level-shift parameter

The dependence of the calculated energies and the strong

orthogonality on the level-shift parameter Z was discussed in

ref. 15. A high value of Z stabilizes the equations and improves

strong orthogonality but incurs a penalty on the solution,

raising the correlation energy. In a given WO calculation,

the degree of strong orthogonality may be monitored by

calculating

wSOij = husij|O(1)+O(2)|usiji/husij|usiji, (9)

which, if small, indicates a more strongly orthogonal pair

function usij. In Table 2, we have listed the total correlation

energy E and pSO ¼� log10 w
SO
1s2

, in water, for the three GGn

models in the cc-pVDZ and aug-cc-pCVTZ(spd,sp) basis sets,

using different level shifts. The pSO measure is based on the

1s2 pair function, which is the only pair function that is

sensitive to small values of Z.

In general, the energy changes little for level shifts in the

range 0.001 o Z o 1. Moreover, the sensitivity to Z is

strongest for the GG0 model in the small basis and weakest

for the GG2 model in the large basis. As expected, strong

orthogonality increases with Z. A comparison of the pSO value

and the energy for different Z indicates that a good compro-

mise is achieved with Z = 0.1, which is therefore used in all

calculations discussed below. Again, similar conclusions were

reached for neon in ref. 15.

D. Linear dependencies and numerical stability

From Table 1 we see that the GGn performance improves with

increasing geminal excitation level n. At the same time, the

WO optimization becomes more difficult—not only because

the dimension of the linear equations increases with increasing

n but also because these equations become more prone to

linear dependencies and to numerical instabilities. To quantify

the linear dependency problem of the GGn pair functions, we

have listed in Table 3 the number of eigenvalues of the

geminal–geminal overlap matrix in different ranges. For a

given AO basis, the number of small eigenvalues increases

with n as more and more GTGs are introduced into the GGn

pair function. For the GG1 and GG2 pair functions, the

number of small eigenvalues increases also with increasing

dimension of the AO basis, since the number of GTGs for

these models depends on the number of virtual orbitals. For

instance, in the aug-cc-pCVTZ(spd,sp) basis there are 1053

eigenvalues less than or equal to 10�15, making the solution of

the linear equations more difficult. In Table 2 we see that, in

the same basis set, the energy varies by as much as 0.04 mEh

for small Z. These variations originate from numerical in-

stabilities in the optimization of the 1s2 pair function. These

problems are only observed with the GG2 model in the large

basis set. For more details on the solution of the linear

equations, see ref. 15.

IV. Results

A. The MP2 correlation energy of water

In Table 4 we present our MP2–GGn correlation energies for

the water molecule. As observed for atoms and diatomics in

ref. 15, the GG0 energy converges slowly with increasing basis

set. Indeed, our best GG0 energy of �351.36 mEh, obtained

with the aug-cc-pCVTZ basis set, recovers only 97.1% of the

Table 1 All-electron MP2-GGn correlation energies (�E/mEh) for
watera calculated using GCF exponents gv taken from the sequence
1/9, 1/3, . . ., 729

NGCF gmax

cc-pVDZ aug-cc-pCVTZ(spd,sp)b

GG0 GG1 GG2 GG0 GG1 GG2

0 — 203.96 203.96 203.96 300.22 300.22 300.22
1 1/9 204.11 204.34 229.85 300.22 300.32 306.82
2 1/3 214.38 258.21 283.43 300.90 326.68 339.98
3 1 256.60 300.18 311.03 315.81 344.66 350.89
4 3 282.17 318.25 328.14 328.49 352.24 356.55
5 9 291.24 328.60 337.29 332.67 356.03 358.71
6 27 295.72 332.12 340.94 335.50 358.09 359.52
7 81 297.41 333.66 342.41 337.09 359.21 359.92
8 243 297.94 334.17 342.84 337.64 359.56 360.12
9 749 298.07 334.28 342.97 337.75 359.65 360.14

a Structure: +(HOH) = 104.521 and r(O–H) = 95.720 pm. b In the

GG2 calculations, we used d functions from the cc-pVDZ basis.

Table 2 Watera all-electron MP2-GGn correlation energies (�E/mEh) and SO measures for different values of the level-shift parameter Z

log10 Z

cc-pVDZ aug-pCVTZ(spd,sp)b

GG0 GG1 GG2 GG0 GG1 GG2

�E pSO �E pSO �E pSO �E pSO �E pSO �E pSO

+3 254.52 2.1 310.84 2.9 332.85 3.3 319.07 3.9 357.43 5.2 359.49 12.6
+2 279.41 1.5 325.49 2.3 338.88 2.5 329.20 3.1 358.94 4.8 359.82 11.2
+1 294.25 1.3 332.71 2.0 342.17 2.2 335.91 2.9 359.52 4.5 360.10 12.6
0 297.65 1.2 334.12 2.0 342.88 2.2 337.55 2.9 359.64 4.5 360.17 11.0
�1 298.07 1.2 334.28 2.0 342.97 2.2 337.75 2.9 359.65 4.5 360.14 9.8
�2 298.11 1.2 334.30 1.7 342.98 1.9 337.78 2.8 359.65 3.7 360.18 9.7
�3 298.13 0.4 334.30 0.3 342.98 0.4 337.78 1.7 359.65 1.8 360.18 8.1

a Structure: +(HOH) = 104.521 and r(O–H) = 95.720 pm. b In the GG2 calculations, we used d functions from the cc-pVDZ basis.
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current best MP2 correlation energy of 361.95 mEh (see

Table 5). The GG1 model, by contrast, converges rapidly: in

the aug-cc-pCVDZ and aug-cc-pCVTZ basis sets, respectively,

97.7 and 99.8% of the correlation energy are recovered.

Moreover, the good correlation energy obtained with the

aug-cc-pCVTZ(spd,sp) basis set indicates that, with only s, p

and d orbitals on oxygen and s and p orbitals on hydrogen, the

GG1 model accurately recovers the correlation energy of

water. However, as we shall see later, this basis set is never-

theless not sufficiently flexible for the calculation of the barrier

to linearity of water. Finally, concerning the more flexible

GG2 model, we note that it recovers as much as 99.4% of the

correlation energy in the small aug-cc-pCVDZ basis set.

In Table 5, we compare our best MP2 correlation energies for

water with literature values. The best literature values have been

obtained using a combination of high-quality basis sets and the

MP2–R12/B method—in particular, we note the correlation

energy of �361.92 mEh, obtained by Klopper in a large AO

basis. The MP2–R12/A values in Table 5 are lower but less

trustworthy, as this approximation is known to give energies

that are too low by error cancellation. The MP2–GTG value of

�356.43 mEh obtained by Bukowski et al.9 is less accurate. We

note that in the WO optimization of this energy the GTGs were

fixed on the nuclei, rather than variationally optimized as is the

normal procedure in GTG theory. By fixing the positions of the

GTGs, the flexibility needed to create strong orthogonality is

lost and the energy becomes too high.

In Table 6, our bestMP2–GGn pair energies are compared with

literature values. From the GG2 values in this table, we obtain a

valence MP2 correlation energy of �300.426 mEh, in agreement

with �300.4(3) mEh recently obtained by Yamaki et al.19

B. The MP2 correction to the barrier to linearity of water

In the mid-1990s, rovibrational states characteristic of the water

molecule were identified in the sunspot spectrum of the sun.23,24

Table 3 Distribution of eigenvalues for some geminal–geminal over-
lap matrices for the water molecule.a Geminals are constructed from
the full set of nine GCFs. Eigenvalues l are reported as D(l) = max(0,
min(15, �int(log10 l)))

D

cc-pVDZ aug-cc-pCVTZ(spd,sp)b

GG0 GG1 GG2 GG0 GG1 GG2

0 17 262 245 17 281 709
1 21 233 227 21 267 681
2 23 305 298 23 340 938
3 29 363 339 29 409 1161
4 20 333 335 20 346 1232
5 17 309 301 17 323 1200
6 6 236 234 6 251 1131
7 2 188 208 2 229 1051
8 164 178 187 986
9 121 138 144 932
10 92 95 122 863
11 55 61 88 762
12 28 30 53 668
13 10 9 35 536
14 1 1 19 461
15 1 11 1053

a Structure: +(HOH) = 104.521 and r(O–H) = 95.720 pm. b In the

GG2 calculations, we used d functions from the cc-pVDZ basis.

Table 4 Watera all-electron MP2-GGn correlation energies (�E/mEh)

Basis VOE GG0 GG1 GG2

cc-pVDZ 203.96 298.07 334.28 342.97
cc-pCVDZ 241.33 307.05 339.13 346.65
aug-cc-pVDZ 221.83 315.79 349.94 357.71
aug-cc-pCVDZ 259.24 324.72 353.48 359.66
aug-cc-pCVTZ (spd,sp) 300.21 337.75 359.65 361.74
aug-cc-pCVTZ (spd,spd) 307.86 342.83 360.35 361.86
aug-cc-pCVTZ (spdf,sp) 321.10 349.44 361.13 361.95
aug-cc-pCVTZ 324.14 351.36 361.26 —
aug-cc-pCVQZ (spd,sp) 309.62 341.34 360.49 —

a Structure: +(HOH) = 104.521 and r(O–H) = 95.720 pm.

Table 5 Watera all-electron MP2 correlation energies (�E/mEh).
Comparison with literature data. Entries are listed in reverse chrono-
logical order

Authors E(2)

This work
MP2–GG0 (aug-cc-pCVTZ)a 351.36
MP2–GG1 (aug-cc-pCVTZ)a 361.26
MP2–GG2 (aug-cc-pCVTZ(spdf,sp))a 361.95

Klopper20

MP2–R12/B (19s14p8d6f4g3h, 9s6p4d3f)b 361.92
Müller et al.21

MP2–R12/A (17s11p9d7f5g, 10s7p5d)a 362.32
MP2–R12/B (17s11p9d7f5g, 10s7p5d)a 361.52

Klopper22

MP2–R12/A (15s9p7d5f3g1h, 9s7p5d3f1g)a 362.01
Bukowski et al.9

Nonlinearly optimized GTGsa 356.43

a Structure: +(HOH) = 104.521 and r(O–H) = 95.720 pm. b Struc-

ture: +(HOH) = 104.2251 and r(O–H) = 95.7119 pm.

Table 6 Watera MP2 pair correlation energies (�E/mEh)

Spin Pair R12/Ab GTGc GG0d GG1d GG2e

Singlet 1a21 40.86 40.76 40.36 40.842 40.862
1a12a1 3.21 3.20 3.12 3.228 3.232
2a21 13.31 13.17 12.98 13.290 13.309
1a13a1 2.16 2.14 1.92 2.155 2.162
2a13a1 17.67 17.21 16.95 17.627 17.663
3a21 25.81 25.09 25.05 25.751 25.794
1b21 26.31 25.98 25.46 26.253 26.318
1b22 25.65 25.10 25.15 25.597 25.637
1a11b1 2.26 2.26 1.98 2.254 2.264
2a11b1 18.93 18.72 18.05 18.883 18.936
3a11b1 16.95 16.49 16.05 16.859 16.932
1a11b2 1.53 1.53 1.34 1.535 1.539
2a11b2 21.28 20.94 20.58 21.225 21.264
3a11b2 17.78 17.35 17.24 17.725 17.776
1b11b2 14.60 14.32 13.88 14.524 14.574

Triplet 1a12a1 1.54 1.53 1.41 1.544 1.547
1a13a1 3.30 3.28 3.05 3.287 3.297
2a13a1 8.49 8.25 8.28 8.474 8.491
1a11b1 3.93 3.93 3.63 3.916 3.931
2a11b1 9.40 9.19 9.12 9.376 9.401
3a11b1 26.69 26.37 26.33 26.651 26.687
1a11b2 2.69 2.69 2.50 2.687 2.694
2a11b2 8.13 8.01 7.97 8.116 8.129
3a11b2 23.84 23.40 23.57 23.803 23.821
1b11b2 25.70 25.45 25.38 25.662 25.690

E(2) 362.01 356.43 351.36 361.264 361.954

a Structure: +(HOH) = 104.521 and r(O–H) = 95.720 pm.
b MP2–R12/A from ref. 22. c Nonlinearly optimized GTGs from ref. 9.
d Using basis aug-cc-pCVTZ. e Using basis aug-cc-pCVTZ(spdf,sp).
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In combination with an increased spectroscopic capability to

detect higher-lying bending states,25,26 this discovery triggered a

renewed interest in the barrier to linearity of the water mole-

cule.27–34 Even though the barrier is relatively large, about

11 100 cm�1, its accurate determination has become an impor-

tant issue as it not only affects the prediction of high-lying

vibrational bending states, but also low-lying bending states

and the rotational states supported by these.27–31

The barrier to linearity of water is dominated by a large

Hartree–Fock contribution (arising from orbital rehybridiza-

tion), with a small negative correlation contribution of less

than 2%. Moreover, the MP2 model overestimates the corre-

lation correction by about a factor of two, while the CCSD

barrier is in good agreement with the CCSD(T) and CCSDT

barriers, indicating that the contributions from higher virtual

excitations are negligible. For previous work on the barrier to

linearity of water, see ref. 3 and 32–34.

The main difficulty in the calculation of the barrier to

linearity in water is to establish the basis-set limit of the small

correlation correction. In their large K43i basis, for instance,

Valeev et al.34 obtained an MP2 valence contribution of

�325 cm�1, as much as 9% above their extrapolated limit of

�357 cm�1. The accurate calculation of the basis-set limit of

the correlation correction to this barrier is therefore a stringent

test for explicitly correlated methods33,34 and, in particular, for

the MP2–GGn method.

Our calculated MP2–GGn corrections to the barrier to

linearity of water are given in Table 7. Whereas the MP2

correction is negative in the basis-set limit, conventional orbi-

tal-based MP2 theory is seen to give a positive correction in all

calculations without diffuse orbitals. The GG0 model performs

slightly better, predicting a negative correction in the triple-zeta

basis sets. By contrast, the GG1 and GG2 models give the

correct sign in all cases although the magnitude is too small.

Proceeding to the aug-cc-pVXZ and aug-cc-pCVXZ basis sets,

we see that conventional MP2 still does not consistently predict a

lowering of the barrier even with diffuse functions added. The

GG0model, on the other hand, now correctly predicts a lowering

of the barrier in all cases. Also, the different basis sets produce

similar barriers. The best GG0 estimate is probably that obtained

with an internal counterpoise correction (ICP) in the aug-cc-

pCVDZ basis, where nearly 80% of the full barrier correction of

�2.1 mEh is recovered. In the ICP calculations, exactly the same

basis is used for both the linear and bent molecules, meaning that

we have hydrogen basis functions at both the linear and bent

positions for both geometries.

While even the best GG0 barrier is only moderately accu-

rate, the GG1 model performs well in all basis sets. In fact,

even in the smallest augmented basis aug-cc-pVDZ, the GG1

energy differs by less than 10% from the estimated basis-set

limit. Moreover, application of ICP does not change the GG1

barrier, suggesting that the two-electron basis set is saturated.

Finally, the GG2 model does not perform better than the GG1

model in the augmented basis sets. In the largest common

basis, the GG1 and GG2 models differ by only 0.02 mEh. The

best barrier estimates are the GG1/aug-cc-pCVTZ estimate of

�2.088 mEh and the GG2/aug-cc-pCVTZ(spdf,sp) estimate of

�2.127 mEh. These two levels of theory also give the lowest

total correlation energies at the two water geometries.

In Table 8 we have decomposed these best GG1 and

GG2 barrier corrections into core (core–core and core–va-

lence) and valence contributions, and given these energies in

cm�1 using an energy conversion factor of 1 mEh = 219.47463

cm�1. While the core contributions are similar, the GG2

valence contribution is lower than the GG1 contribution.

From a comparison of the GG0 and GG1 corrections in the

aug-cc-pCVTZ and aug-cc-pCVTZ(spdf,sp) basis sets,

however, we expect the GG2 contribution to be slightly

higher in the larger aug-cc-pCVTZ basis set. From the

GG1/aug-cc-pCVTZ and GG2/aug-cc-pCVTZ(spdf,sp) calcu-

lations, we estimate that the core and valence correlation

corrections to the barrier to linearity of water are �111.0 �
0.5 cm�1 and �352 � 5 cm�1, respectively, giving a total

correlation correction of �463 � 5 cm�1.

In Table 8 we have also given the best previous literature

estimates of the water barrier. These values have been ob-

tained using MP2–R12 theory in the large basis sets K2

Table 7 All-electron MP2 correlation-energy corrections to the
barrier to linearity for the water molecule. Energies are given in
mEh. The water geometriesa are taken from ref. 34

Basis VOE GG0 GG1 GG2

cc-pVDZ +1.541 +0.397 �0.789 �1.631
cc-pVTZ +0.014 �0.560 �1.176 �1.500
cc-pCVDZ +1.666 +0.810 �0.620 �1.077
cc-pCVTZ +0.028 �0.399 �1.151 �1.423
aug-cc-pVDZ �0.399 �1.691 �2.245 �2.539
aug-cc-pVTZ �1.092 �1.628 �2.095 —
aug-cc-pCVDZ �0.311 �1.319 �2.053 �2.207
aug-cc-pCVDZ +ICP �0.665 �1.664 �2.053 —
aug-cc-pCVTZ (spdf,sp) +0.347 �1.611 �2.104 �2.127
aug-cc-pCVTZ �1.086 �1.475 �2.088 —

a Bent molecule: +(HOH) = 104.3431 and r(O–H) = 95.885 pm.

Linear molecule: +(HOH) = 1801 and r(O–H) = 93.411 pm.

Table 8 Core and valence contributions to the MP2 correlation-
energy correction (E/cm�1) to the barrier to linearity for the water
molecule: a comparison with literature data.a Basis sets are specified in
the text

Authors DE[core]

This work
MP2–GG1 with basis aug-cc-pCVTZ �110.6
MP2–GG2 with basis aug-cc-pCVTZ(spdf,sp) �110.9

Valeev et al.34

MP2–R12/A with basis K21h �110
Tarczay et al.33

MP2–R12/A with basis K2 �109
MP2 with basis K2 �106

DE[valence]

This work
MP2–GG1 with basis aug-cc-pCVTZ �347.6
MP2–GG2 with basis aug-cc-pCVTZ(spdf,sp) �355.8

Valeev et al.34

MP2–R12/A with basis K43i �357
MP2 with basis K43i �325
CBS limit �353

Tarczay et al.33

MP2–R12/B with basis K2+ICP �344
a Bent molecule: +(HOH) = 104.3431 and r(O–H) = 95.885 pm.

Linear molecule: +(HOH) = 1801 and r(O–H) = 93.411 pm.
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[(15s9p7d5f,9s7p5d)], K21h[(15s9p7d5f3g1h, 9s7p5d3f1g)], and

K43i [(19s13p11d9f7g5h3i, 13s11p9d7f5g3h)].

For the core correction to the barrier, the MP2–GGn and

MP2–R12/A approaches give similar results—indeed, in the

K21h basis the R12/A result differs from ours by only 1 cm�1.

Incidentally, in this basis the difference between the MP2 and

MP2–R12/A barriers is only 3 cm�1, probably due to an error

cancellation between the energies at the bent and linear

geometries in the conventional calculations.

For the valence correction to the barrier in water, the

different approaches produce quite different results. For in-

stance, Valeev et al.34 obtained a barrier of only �325 cm�1

using conventional MP2 in the large K43i basis, more than

30 cm�1 from their suggested limit. Our best valence results of

348 cm�1 (GG1) and 356 cm�1 (GG2) are close to the value of

357 cm�1 obtained by Valeev et al.34 in their largest basis set.

From a convergence analysis of our results, we believe the true

valence MP2 value is �352 � 5 cm�1, slightly smaller in

magnitude than the value of �357 � 5 cm�1 proposed by

Valeev et al.34 The total correlation correction to the barrier to

linearity is then �463 � 5 cm�1 or �2.11 � 0.02 mEh.

V. Conclusions

In this work we have presented MP2–GGn correlation en-

ergies for the water molecule, using pair functions of the form

shown in eqn (4) optimized using the WO functional eqn (7) as

described in ref. 15. Our previous work on atoms and dia-

tomics showed that the GG1 and GG2 models can give

correlation energies close to the basis-set limit, even for small

GCF expansions.15 Applying the GG2 model, we then ob-

tained the current best estimates of the MP2 correlation

energies of the neon atom (�388.19 mEh), the hydrogen

molecule (�34.252 mEh), and the hydrogen fluoride molecule

(�384.41 mEh).

In the present paper, we have presented the current best

estimate of the all-electron MP2 correlation energy of the

water molecule, �361.95 mEh, obtained at the GG2/aug-cc-

pCVTZ(spdf,sp) level of theory. The best GG1 and GG0

values are �361.26 and �351.36 mEh respectively, calculated

with the aug-cc-pCVTZ basis set. As observed for smaller

systems in ref. 15, the GG1 performance is comparable to that

of the GG2 model, whereas the performance of the GG0

model is poorer. We note, however, that the performance of

the GG0 model is significantly improved by using the inter-

mediate orthogonality (IO) functional in place of the WO

functional used in our present implementation.17

We have also calculated the MP2 correlation correction to

the barrier to linearity of water. Based on our own estimates of

this correction and the value given by Valeev,34 we suggest the

value �463 � 5 cm�1 for this correction.
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