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1 Introduction

Developments during the last few years have made it increasingly feasible to use
measurements of DNA to calculate probabilities or likelihood ratios in identifi-
cation cases. Roeder (1994) reviews the issue from a statistical point of view.
Even in simple cases, like the one shown in Figure 2, considerable time may be
required to work out the exact formulae, particularly for non—experts. In suffi-
ciently complex cases, analytical calculations may become prohibitive. We have
developed and implemented and algorithm called pater (Mostad & Egeland
(1995)) addressing the following two related questions:

e Given a pedigree, what is the probability of making certain DNA mea-
surements for persons in it?

e Given two alternative pedigrees, what is the odds ratio between them,
given certain DNA measurements? More specifically, pater calculates a

likelihood ratio
P(data | one pedigree)

P(data | another pedigree)

for each allele system involved and multiplies the odds to obtain the overall

odds.

An early discussion of the closely related paternity indez is provided in Essen-
Moller (1938). Lindley (1977) and Evett (1991) discuss the likelihood ratio in

a Bayesian context.

Section 2 describes the basic algorithm. A simple extension to allow for muta-
tions is discussed in Section 2.1. Section 3 includes examples demonstrating the
performance of the algorithm.

The discussion concluding the paper addresses mainly improvements of the mu-

tation model and kinship, cf. Balding & Nichols (1995).
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2 The ‘pater’ algorithm

Consider a pedigree consisting of persons Xi,...,X,, and focus on a single
system. Let ¢1,...,t; be a list of the alleles in this system appearing as ob-
servations from the pedigree, and let ¢y denote all alleles different from these.
Specifying all alleles for all persons in the pedigree, we obtain what we will
refer to as a constellation. Disregarding for a moment family relations, we re-
alize that there is a total of (k + 1)>" constellations: Each of the 2n alleles
d11, @12, - ., dn1, Gna (a;1 denotes the paternal allele of person i while a;5 is the
maternal) may be of either of k + 1 types tg,?1,...,tx. Assuming knowledge of
allele frequencies of ¢; for ¢ = 1,...,k, the frequency of the rest allele becomes
P(ty) = 1 — P(t1) — ... — P(tg). Including family relations but disregarding
mutations (the modification required to take care of mutations is attended to in
Section 3.2), we may compute the probability P(ai1, a12,a21,a23, ..., an1,an2)
of a constellation by writing

P(ai11,@12,a21,a22, - . ., 0n1,an2)
= P(ay) - P(ais) (1)

-P(as1 | @11, a12) - P(azz | @11, a12)

-Plani | a11,a12,. .-, @n_1,1,0n-1,2) - P(ana | @11, 012, ..., @n—1,1, Gn_1,2).

If we order X7, ..., X,, chronologically implying that parents of X; have indices
smaller than ¢, the conditional probabilities are easy to compute. The con-
ditional probability of an a;; whose relevant parent is not among Xi,..., X,
coincides with the general allele population frequency P(a;;). If, however, X
is the appropriate parent (then we know that k < i))

1 if Ai5 = Qg1 and Ai5 = Qk2,
if Ai5 = Gp1 and a5 ;é a2,
if 25} ;é ar1 and Gij; = Qf2,
if 25} ;é ar1 and a5 ;é ar9.

Paij | a11,a12,...,ai-11,0i_12) =

O ==

We may now compute the probability of the data given the pedigree by summing
all constellations compatible with data:

P(data | pedigree) = E P(ai1,a12,a21, a2, . .., 1, an2).
constellations

compatible with data

The outlined approach may demand large computer resources and so more effi-
cient algorithms are called for. In particular, we would like to detect and discard
zero probability constellations as early as possible. Intuitively, it is also reason-
able to attend to persons assigned observations as early as possible. Moreover,
as will be exemplified in in Section 3.1, it is advantageous to let parents precede
children. We may do so by rearranging the factors appearing in (1). Define
functions

plaii, a1, ..., 1,1, @Gi—1,2, 831, @2) = by by - ... by, (2)
where
1 if X; has both parents among X1,..., X,
fe P(a;1) if only mother is among X1, ..., X,, (3)
- P(a;2) if only father is among X1, ..., X,,

P(a;1)P(a;2) otherwise.



There is one factor b; for each parent/child pair appearing in the pedigree, where
either the parent or the child is X;. Furthermore,

1 if both parent alleles are identical
b — to the allele the child has inherited from this parent, (4)
7 % if one parent allele coincides with the child’s,

0 otherwise.

Observe that b; may be interpreted as the conditional probability of the pater-
nal (maternal) allele given the father’s (mother’s) alleles. This interpretation
prevails in Section 3.2 where mutations are considered. The definitions of f and
b; in (3) and (4) are illustrated in Figure 1.

Hn®

(c.e)

Figure 1: The figure illustrates Equations (227 (3) and (4). Specifically,

p((a,c), (a,b),(c,d), (c,e)) = fbibobs =1- % 5 % Assuming, on the other hand, no data is
available for person 2: p((a,c), (a,b), (c,e)) = P(c) - % . %

The equation below contains exactly the same factors as the product in (1), and
SO

P(ai1, @12, a21,a22, . . ., an1, dn2)
= plai1,a12) (5)

P(an, a12, @21, 022)

p(all, ais,...,Qn1, an2).

This may be realized in several ways. A formal proof by induction follows
(perhaps overdoing it a bit):

e Equation (5) holds for n = 1.

e Assume (5) to be true for n = k. The validity for n = k£ + 1 requires that

P(flk+1,1, Ak 41,2 | a11,a12, .-, 0k 1, ak,z) = P(Cln, a1z, ..., k41,1, Clk+1,2)-

This concludes the proof since the persons are ordered chronologically
implying the last equation.

Sorting X7, ..., X, to achieve that persons with measured alleles are attended

to first, we get

P(data | pedigree) = Z P(ai1,a13,...,an1, an2)
constellations

complying with data



= Z plair,aiz) ... p(.. ., an1, an2)

constellations

complying with data

= Z P(an,a12)

(a11,a12)
complying with data

Z plai, aiz, a1, ass)

(a21,az2)
complying with data

Z P(an, @12, a21, 22, d31, a32) : [ . ]

(a31,asz)
complying with data

Rephrased as above, the algorithm is well suited for recursive implementation.
At each level, one computes allele combinations (a1, a;2) complying with data,
and such that p(ai1,ai12,...as1,a:2) > 0. Pairs (a1, a;2) with j > 7 are only
checked for such cases.

2.1 Modifications to account for mutations

The pater algorithm may be modified to include quite general mutation models
by changing the definition of b; in Equation (4). Currently, only a simple
mutation model has been implemented. A mutation probability M is specified
for each system as well as the total number n of alleles in the system. An allele
mutates to any of the other n — 1 equally probably. The required modification
amounts to replacing (4) by b; = %g(al, b) + %g(az, b) where @y and ay are the
alleles of the parent and b is the relevant allele of the child, & the number of
specified alleles, and

1-M if a#tg,b=a,
M if a#tg,b#a

_ n—1 ’ 3
glaby=9 1 "y b if a=tg,b=a,
M_(n—k) if a=to,b#a.

A simple example is provided in Section 3.2. As demonstrated in Example 3.3,
the speed of the algorithm is seriously affected by introducing mutations since
all constellation will then have non—zero probabilities.

3 Examples

The first two examples, Section 3.1 and 3.2 of this section, are simple in the
sense that they can be worked out fairly quickly by a trained person. They are



included basically to check the performance of the algorithm. Certain trans-
formations may be performed on pedigrees leaving the odds unchanged thus
allowing checking pater without knowing the exact answer. One such example
appears in Section 3.3.

3.1 The case of the missing father

A corpse is found, and one wants to determine whether this is in fact the missing
father of two brothers. The pedigree is shown in Figure 2 and complete data is
provided in Table 1. The odds in favor of F being the father of E and S becomes

(P(al)+ P(bl)) (14 P(al) + P(b1))
4P(al)P(b1)(1+ P(al) + P(bl) +2P(al)P(b1))
1+ P(a2) + P(b2)
4P(a2)P(b2)[(1+ P(a2))]
14 P(c3)
4P(a3)P(b3)[1+ 2P(c3)]

=2.9275, (HLADQAL)

= 4.905, (HUMFES)

= 371.85. (HUM ACTBP2)

The results agree with those obtained from pater. The efficiency of the al-
gorithm in the example may be summarized as follows if F is the father and
HUMACTBPZ2is the system. In this case n = 4 persons define the pedigree and
k = 3. Consequently, there is a total of (k + 1)2n =48 = 65536 HUMACTBP?
constellations. pater orders F prior to F and S which in turn precede persons
without observations; in this case the mother. The number of constellations
considered by paterequals 2-1-1-4-4 = 32. Several of the 16 terms correspond-
ing to the mother vanish, but they are inspected and should thus be counted.
Note that 64 combinations would be required if the sons were ordered prior to
the father.

Figure 2. The pedigree shows that data are available for two brothers and their possible
father.

3.2 Mutations

Assume there is an alleged father with alleles A and B in some system, and a
son with alleles C and C, see Figure 3.

Obviously, with a mutation rate of 0, the odds that the alleged father is the
real father is 0. With a positive mutation rate M however, complicates the



HLADQA1 F E S
al bl (al,bl) (al,bl) (al,bl)
frequency | 0.125 0.237
HUMFES
a2 b2 (a2,a2) (a2,b2) (a2,b2)
frequency | 0.298 0.197
HUMACTBP?2
a3 b3 c3 | (a3,c3) (b3,c3) (a3,b3)
frequency | 0.063 0.01 0.072

Table 1: The case of the missing father. Data for systems HLADQA1!, HUMFES and
HUMACTBP?2 for persons F, E, S, see Figure 2.

AB

cC

Figure 3: Tlustration of model for mutation.

computation. If the alleged father is the real father, then we get a probability
of observing the given data of

1

n—1’

P(A)P(B)P(C)M

where n is the total number of possible alleles in the system. If he is not, then
pater computes the probability of the data by considering whether the allele
inherited by the child from the real father was C' or non-C. The probability of
the data equals

P(A)P(B)P(C) P(C)(l—M)—i—(l—P(C))Mnil .
while the odds becomes
ML B M
P(CY1—-M)+(1- P(C’))Mﬁ - PO)(I-M)n-1)+(1-PO)YM’

Assuming P(A) = 0.1, P(B) = 0.2, P(C) = 0.3, M = 0.02 and n = 50, leads to
an odds of 0.00138696 as confirmed by pater.

3.3 Example based on similar pedigrees

Example 3.1 Consider the pedigree shown in Figure 4. V.1 is (a,b); the corpse
or body, assumed to be I1.2, is (a,c). Based on results in Mostad (1995) (Cock-



erham (1971) is also relevant) the body found is equally likely to be I1.2 as I.1
provided mutations are disregarded. This is confirmed by the pater algorithm.

1.1 1.2
1

1.1 1.2 ? |BODY
T fag

1.1

V.1

V.1

{a,b}

Figure 4: A body is found, suspected to be I1.2. Only data from V.1 is available.

Performance. In the above case there is a total of 4!* = 268435456 constel-
lations provided the body is I1.2. An odds calculation like the above takes 6
CPU-seconds ! on a Sparc-solaris station. If mutations are included all constel-
lations contribute and the execution time increases to 322 seconds. As a rough
estimate, pater only considers 1.9% of the total number of constellations. If
data is available also for persons IV.1, III.1, IV.1, say (a,d), (a,e) and (a,f),
respectively, the total number of constellations equals 7'4 = 0.7-10'2. However,
pater calculates the odds instantaneously in this case since more constellations
may be avoided.

Example 3.2 This example expands on the previous. Data is available for
IV.2,IV.3 and V.1 as shown in Figure 5. The odds in favor of the body being
the remaining persons of the pedigree are provided in Figure 5 assuming a to
have frequency 0.01 and ¢ 0.05. The CPU time is less than 135 seconds. In this
case brute force considering all constellations seems prohibitive. After 12 hours,
pater had not worked through all constellations allowing for mutations and we
discontinued the run. If the body is, say I1.2, the total number of constellations
is 9.5 - 10",

4 Discussion

We would like to draw attention to

1CPU time may be a confusing concept. In the present case, system time is negligible and
CPU time coincides with user time. Throughout times reported in seconds refer to CPU time.



R 7
8.4
I [
.1 1.2 body
15.8 8.4 {a.c}
n.1 1n.2
33.0 @
V.1 V.2 V.3
490.6 {a,d} {a,c}
V1 frequency:
a 0.01
{a,b} ¢ 0.05

Figure 5: Data is available for IV.2, IV.3 and V.1 as shown. The odds in favor of the body
being various persons is indicated assuming a to have frequency 0.01 and ¢ 0.05. In this case
brute force considering all constellations seems prohibitive. pater delivers an odds in less than
135 seconds on a Sparc—solaris.



e Models for mutation. The one we have presented may be criticized
essentially because allele frequencies depend on the specification of the
pedigree. Specifically the answer may differ slightly if irrelevant persons
are added to the pedigree. This inconsistency is believed to be of no
practical significance. It may however be alleviated by modifying the
probability of mutating from A to B to M P(B).

¢ Kinship. Consider n persons with no family relations. pater bases its
calculations on

P(a11,a12,a21,a22, . .., an1,an2) = P11P12 * * - Pn1Pn2 (6)

Following Balding & Nichols (1995) the right hand side of should be re-
placed by

E(p11p12 - Pn1, Pn2) (7)

where the vector of allele frequencies

(P11,P12,P21,P22, cee :pnlan)

is Dirichlet distributed. Closed formulae are then available to calculate 7.
It is our intention to extend the pater algorithm to include kinship. How-
ever, based on our Norwegian experience, kinship is not likely to be im-
portant in the majority of identification cases.

¢ Continuous models, i.e., using allele measurements on an continuous
scale as discussed in Devlin, Risch & Roeder (1992), require methods and
algorithms beyond from what we have presented.

e Other applications. The pater algorithm may be applied to determine
the most likely family relations. In practical cases, there should be no
need for sophisticated optimization; tour de force methods, i.e., running
through a large number of pedigrees is expected to be sufficient.
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