
An Architecture for Unified Dialogue in Distributed Object Systems

A. Larsen, P. D. Holmes
Norwegian Computing Center (NR)

Oslo, Norway

Abstract

In traditional information systems, the user interface is
controlled by one single application. In distributed sys-
tems, several distributed components may want to influ-
ence the appearance and logic of the user interface. This
paper describes a Unified Dialogue Architecture which en-
ables several distributed components to control the logic
and contents of the user dialogue while keeping the dia-
logue consistent. This architecture is a practical exam-
ple of using dialogue agents, CORBA and Java. Details
are described in connection with a large domain-specific
distributed system called SPACE. Discussion is also pro-
vided as to other manners in which this architecture may
be implemented, followed by a discussion concerning other
problem areas in which the Unified Dialogue Architecture
can be effectively applied.

1 Introduction

In traditional information systems, the user dialogue is
usually controlled by one single application. The parts
of the application controlling the user dialogue may be
thought of as a dialogue system [16]. In a distributed sys-
tem, several server components may be part of the dialogue
system. This paper considers distributed systems where
each server component may be owned and maintained by
separate organisations or parts of an organisation or both.
These entities have something in common (i.e., the reason
for building or using the system). Even so, they want to
control their own parts of the dialogue, with respect to con-
tent and logic, independently from the other components.

In the system contexts addressed here, the complete
system delivers a set of services. Any given service
may depend upon functionality realised by co-ordination
across some number (perhaps all) of the server compo-
nents. Therefore we want to keep the interface consistent
and uniform for the user, while still allowing the involved
organisation(s) to fulfil their content- and logic-related re-
quirements for the user interface. Alternative implementa-
tion approaches include:

1. Use of tightly integrated, yet different applications,
each having their own user interface. Each could ex-
ploit the same basic system infrastructure and ser-
vices, and employ common user-interface design
“style guides” in order to try to achieve a relatively
consistent look and feel across the different applica-
tions. As a drawback, this approach offers no facil-
ities for co-ordination between the different compo-
nent owners.

2. Extending the previous solution with an interface
agent providing co-ordination facilities (an example
is given in [18]). Here, endpoint co-ordination is
achieved, but no facilities exist for tighter integration.

3. Designing only one client with one user-interface.
Such an interface would have to be flexible enough to
satisfy all the components’ business objectives within
a number of different use environments. At the same
time it would have to maintain consistency amongst
the interface’s various graphical and media elements.

Traditional client-server systems achieve the latter to a
certain degree. They do this by implementing a complete
dialogue system in the client, sacrificing some flexibility
by hard-coding the dialogue in the client. This paper de-
scribes a Unified Dialogue Architecture which enables dis-
tributed dialogue systems to deliver unified dialogues. A
unified dialogue allows the user to conduct an orderly and
consistent discourse with the system even though the dia-
logue is controlled by several independent components. Of
equal significance is the condition that the dialogue itself
is not known by the client until run-time. The distributed
dialogue system enables the different server components’
owners to modify their own parts of the dialogue - within
the bounds imposed by the established semantic frame-
work - without necessitating change or re-configuration of
other parts of the system.

This paper begins with a presentation concerning the
basic aspects of unified dialogue handling. The Unified
Dialogue Architecture is thereafter discussed, followed a
description of its use in relation to a large domain-specific
system called SPACE (see [19], [6], and [7]). Interest-
ing characteristics of other possible implementations of the



Unified Dialogue Architecture are then discussed, followed
by a discussion concerning other problem areas in which
the architecture can be effectively applied. Finally, the re-
sults are summarised, and the current status and thoughts
about future work are presented.

2 Unified Dialogues

A unified dialogue is a user dialogue built up of parts
controlled by different server components, while still re-
taining the look and feel of a single application. The goal
of unified dialogue handling is to facilitate unified dia-
logues within distributed systems contexts. To achieve this,
two objectives should be fulfilled:

1. the total dialogue should appear logically consistent
to the user, and

2. response times should be similar to those of a single
application.

To meet these objectives, several aspects must be con-
sidered. Table 1 summarises these aspects. Examples
of how these aspects affect an actual implementation are
given in section 3.3. Section 5 shows how these aspects
can be implemented.

The design of the user interface itself is not included
within table 1. It is equally important in this kind of sys-
tem as in any other system. It is not taken into account here
since this problem is not specific to unified dialogue han-
dling. The reader can find this subject thoroughly treated
within the systems development literature (see, e.g., [15]).
The architecture described here is not dependent upon any
specific type of user interface. Instead it may provide ac-
cess to all facilities the client can offer. It also allows the
user interface to be designed for a specific system context.

3 The Unified Dialogue Architecture

This paper describes the Unified Dialogue Architec-
ture. The architecture is built using principles from agent-
oriented programming [17]. The Unified Dialogue Archi-
tecture is situated within the context of a larger service ar-
chitecture. The service architecture consists of server com-
ponents, a common client, and the necessary communica-
tions infrastructure. With respect to the Unified Dialogue
Architecture, the server components are responsible for de-
livering dialogue agents. The common client provides a
dialogue agent environment able to host multiple dialogue
agents. The dialogue agent environment also provides fa-
cilities for screen management and co-ordination between
dialogue agents.

System context In order to make the system (in
particular the user dialogue) appear
consistent and logical to its users,
some sort of common understand-
ing of the system must be estab-
lished and agreed upon. This in-
cludes the purpose of the system, its
functionality, the basic kinds of ser-
vices and information to be made
available through the system, etc.
The decisions made in this regard
are dependent upon the system con-
text and those decisions influence
the need for co-ordination during
both system development and sys-
tem execution.

Service archi-
tecture

Aspects of the service architecture
relevant for dialogue handling in-
clude the responsibility and de-
pendencies between server compo-
nents, as well as for dialogue con-
tent and behaviour.

Interaction
model

The interaction model defines how
the user interacts with the system
and how the results are processed.

Execution
model

The execution model defines how
client and server objects interact
during the execution of the user di-
alogue.

Implementation
and infrastruc-
ture

In order to realise this kind of sys-
tem, several infrastructure and im-
plementation issues arise. These
include programming languages,
communication standards used, etc.

Table 1: Aspects of dialogue handling in distributed sys-
tems.

The dialogue agent environment together with the dia-
logue agents facilitates a consistent dialogue, thus mimick-
ing a single application. The use of dialogue agents also in-
fluences response time. Retrieving dialogue agents across
the network induces network-specific time dependencies;
during the agents’ local execution, however, the client’s re-
sponsiveness may be similar to that of a single application.

The Unified Dialogue Architecture bears resemblance
to the Open Agent Architecture [2]. The difference lies
in that whereas the Open Agent Architecture focuses upon
building a complete agent- oriented service architecture,
the Unified Dialogue Architecture aims at facilitating uni-
fied dialogue within any service architecture.



3.1 Dialogue Agents

A dialogue agent is a server-delivered communicative
autonomous interface agent1. A traditional interface agent
is assumed to be acting on the basis of the user’s agenda,
representing the users’ intentions [10]. A server-delivered
interface agent is different in that it reflects the needs of the
service providers in fulfilling the user’s assumed intents,
not the user’s own agenda. A dialogue agent is commu-
nicative in that it may interact with the user and other dia-
logue agents through the dialogue agent environment. This
approach may therefore be best suited for specific services
where the user’s intent can be at least partially assumed2.

Each dialogue agent contains a dialogue script defin-
ing the content and logic of their part of the total user dia-
logue. In addition, each dialogue agent must know how to
communicate the results back to the relevant server compo-
nents for processing, and how to present the result of this
process.

3.2 Dialogue Agent Environment

The dialogue agent environment provides facilities for
presenting unified dialogues. This includes facilities for
co-ordinating the total dialogue between the different di-
alogue agents. It co-ordinates screen layout, questions
asked, and user-supplied replies. This co-ordination is
achieved using rules and policies for screen layout, com-
mon name spaces for variables and questions, and rules for
handling conflicts between dialogue agents. In a specific
system context, additional facilities may be important and
thus part of the dialogue agent environment. Other aspects
may involve policies and decision defined by central server
components. Such co-ordination must be considered in the
service architecture.

The dialogue agent environment is also responsible for
retrieving dialogue agents and executing them. Retrieval
of dialogue agents is achieved through the service infras-
tructure.

In an implementation of the Unified Dialogue Architec-
ture, the dialogue agent environment can be realised as part
of a Java applet. This means that security issues are han-
dled by the web-browser’s security mechanisms in addition
to restrictions imposed by the service infrastructure and the
dialogue agent environment itself. It also means that the di-
alogue agent environment itself may be implemented as an
agent, delivered by appropriate server components.

Because of restrictions in Java applets, the service ar-
chitecture must be available through server components on
the host delivering the Java applet, or through a proxy on

1See [3] for a classification of agents.
2[20] gives an account of the differences between the users’ actual

behaviour and intentions, and the assumptions built into the system.

the same host. The execution of dialogue agents is depen-
dent on the implementation chosen. Possibilities include
special scripting languages and pure Java code.

3.3 Semantic Framework

To design an interactive user dialogue which appears
logically consistent when controlled by different server
components, it is extremely advantageous - though not nec-
essary - to establish a shared semantic framework for the
dialogue. Such a framework is necessary, however, in or-
der to facilitate semantic co-ordination between dialogue
agents.

Rigorously applied, a shared semantic framework en-
sures semantic equivalence across dialogue agents supplied
from distributed components. This enables such agents the
possibility of reusing one anothers’ results. That is, infor-
mation supplied by the user - as a result of a dialogue pro-
cess generated by one dialogue agent - can be employed by
other agents and within other server components.

Development of a shared semantic framework can help
alleviate - though perhaps not cure - eventual problems re-
lated to logical consistency within the user-interface. To
help illuminate this, we first point out that the dialogue-
related part of each server component must be allowed to
specify its own semantic domain; this naturally includes
the elements within that domain. In addition, each server
component must be allowed to have its own perspective as
to what constitutes ‘logical consistency’ amongst those el-
ements.

Figure 1 provides an example which illustrates the ele-
ments within the semantic domains of each of components
A, B and C. During a system-wide co-operative effort to
identify common semantic elements, it is discovered that
Domains A and B have elements e5A and e5B, respectively
- elements which are essentially equivalent from a seman-
tic perspective. As part of the co-operative effort, one of
these elements is selected (or a new one agreed upon), and
thereafter “renamed” e5. From this point on, e5 can be
employed by Domains A and B (or any other Domain)
as a common, well-defined element within a system-wide,
shared semantic framework. In the same way, e6 is also
identified and defined as a common element. Section 4.5
will discuss how these elements relate to questions for the
user within the SPACE system.

Thus far, the co-operative effort in this example has
led to the identification and definition of some common
semantic elements (e.g., e5 and e6). Still, there remains
the problem that each server component must be allowed
to have its own perspective as to what constitutes ‘logical
consistency’ amongst those elements. From figure 1, it is
clear that certain elements are not semantically relevant in



e5A

e6A

e3A e1A

e3
A

e5C

e2C

e6C
e2C

e6

e5
e5B

e6B

e7B

e4B

e4B

e7B

Domain A
Domain A

Domain B
Domain B

Domain C

Domain C

e1A

Figure 1: Development of a shared semantic framework

all Domains (e.g., e3A is not relevant within Domains B
nor C).

When mapping these element to questions which each
server component wishes to ask of the user, it is not possi-
ble to claim that a shared semantic framework can guaran-
tee complete logical consistency within the user-interface:
each individual Domain has its own consistent logic but,
when all Domains are viewed together as a whole, the
union of these Domains may not be logically reconcilable.
This is the theoretical perspective.

From a practical working perspective, however, we ar-
gue that a shared semantic framework can help alleviate
eventual problems related to logical consistency within the
user-interface. We argue that the development and use
of a shared semantic framework increases the likelihood
that it is possible to construct distributed dialogues which -
though not completely reconcilable from a theoretical per-
spective - may co-exist within a user interface without con-
fusing or disturbing the user.

4 The SPACE Dialogue Architecture

The Unified Dialogue Architecture arose as an essen-
tial element within the infrastructure required within the
SPACE project (Single Point of Access for Citizens of
Europe) [7]. Before addressing the various aspects aris-
ing from the requirements of unified dialogue handling,
this section opens with a brief introduction to the SPACE
Project. This introduction should help provide a concrete
context in which to understand the role and necessity of the
Unified Dialogue Architecture with respect to SPACE and,
perhaps to other problem areas as well.

4.1 The SPACE Project: Background

SPACE addresses the following problem: Within the
European Community, the Maastricht treaty grants Eu-
ropean Citizens free movement between Member States.

These citizens currently face a number of administrative
barriers when planning and carrying out such moves, how-
ever. These include:

1. ascertaining precisely which rules and regulations are
applicable to their own, particular moving situation;
and,

2. acquiring the certified documents which will be re-
quired in order to register (and de-register) themselves
with a variety of Administrative agencies/sectors in
the destination (and departure) countries. In general,
such documents contain information about the Citizen
which is stored within electronic archives controlled
by such various Administrations.

In order to receive required information, deliver or cer-
tify documents, etc., the conditions above render it neces-
sary for Citizens to contact numerous Administrative agen-
cies. The Citizen may even have to visit some such agen-
cies more than once.

One of the main objectives of the SPACE Project has
been to demonstrate the possibility of providing a Single
Point of Access for administrative services related to mov-
ing within the EU, based upon a telematic infrastructure for
the retrieval, assembly and international exchange of such
information. Using the SPACE system, authorised civil
servants can help provide Citizens with one-stop shopping
of administrative services. Using data which is more ac-
curate and reliable, both Citizens and Administrations can
benefit from a more efficient registration process.

To meet SPACE’s main objectives, work has been done
to develop:

� the system concept and the SPACE system’s basic, ar-
chitectural framework; and,

� a Demonstrator based on state-of-the-art technology,
in order to illustrate the concept and its benefits, as
well as help identify the functionality required for an
operational system.

4.2 Information Products Delivered by SPACE

SPACE can deliver two fundamentally different kinds
of information packages. Each of them respectively ad-
dresses the needs of the Citizen, as described in points 1
and 2 above. The first kind, Advice Packages, contains the
kind of information one might normally publish and have
available as brochures at some administrative office. For
the end-user, the SPACE system can deliver Advice Pack-
ages containing General Advice and/or Tailored Advice.

General Advice is information which can be provided
about moving within the EU when only knowing things



such as the Citizen’s planned departure and destination
states. Tailored Advice, on the other hand, is information
which is especially tailored to fit the Citizen’s moving sit-
uation. Customising advice in this manner requires greater
knowledge about the details of the moving case. Such de-
tails are gathered from the Citizen via an interactive di-
alogue process which runs on the Client. This dialogue
process is realised through use of the SPACE Dialogue Ar-
chitecture, whose design is based upon the principles of
Unified Dialogue Architecture.

The second kind of information package is Portfolios.
Within SPACE, the purpose of Portfolios is to contain data
about the Citizen which has been electronically retrieved
from databases owned by various Administrations. The
data content itself is precisely tailored to match the infor-
mation which the Citizen’s destination state will require in
order that the moving Citizen can be properly registered in
the new state. As with Advice Packages, tailoring this kind
of information requires acquisition of details about the Cit-
izen’s moving case through an interactive dialogue process
with the Citizen. With such details available, the SPACE
system has the capacity to determine precisely which data
elements the foreign state requires as part of its registration
process(es). Portfolios also contain a subpackage which is
a collection of all data input by the Citizen during the in-
teractive dialogue process.

4.3 System Context

The context of the SPACE System is support for moving
citizens and the administrations involved. In SPACE the
involved countries, sectors3 and local administrations need
to obtain information about the moving citizen in order to
provide the necessary support. This is achieved through
use of the SPACE Dialogue Architecture.

In SPACE, each sector owns and maintains its own
server components, which includes design of its own di-
alogue agents. In order to provide dialogue support con-
sistently and effectively across all sectors, the SPACE Dia-
logue Architecture must handle any inter-dependencies be-
tween the sectors within one country, as well as any inter-
dependencies which may exist amongst countries.

4.4 Service Architecture

In the SPACE System, objects are distributed according
to figure 2.

Each country has its own domain. Each domain con-
tains one Master object and several Expert objects4. Each

3In SPACE, the sectors addressed are Social Security (SS), Civil Reg-
istration (CR), Health (HL), Vehicle Registration and Driver’s License
(VL) and Tax (TX).

4The Master and Expert object types are implemented in a generic

Client

VL
CRHL

TXSS

CountryA

VL
CRHL

TXSS

CountryB
MasterMaster

Figure 2: The SPACE Service Architecture

Expert is responsible for one administrative sector, such as
social security (SS) or Tax (TX), within its own country.
The Master object is responsible for serving clients and
delegating requests to its own Experts and to the Master
object of another country. It may also enforce country-
specific and cross-sectoral policies. Any communication
between domains is carried out by the Master objects.

All SPACE functions are initiated by the client by way
of a local Master. This Master may call upon another coun-
try’s Master and/or its own Experts. The results of these
calls are collected and returned to the client. This means
that all run-time co-ordination of content supplied by sec-
tor or country objects must be done in the Master object or
in the client itself. To reduce the interaction between the
client and the local Master, we have chosen to make the
client responsible for this type of co-ordination.

This architecture makes it easy to add new (or remove
existing) sectors and countries. It also caters for differ-
ences between countries in that the sectors are logical ab-
stractions, not necessarily reflected in the governmental
structure.

4.5 Dialogue Agents and the Dialogue Agent En-
vironment

All run-time co-ordination of content supplied by Mas-
ters and Experts is performed by the client; this includes
facilitating co-ordination between the dialogue agents
through the dialogue agent environment. To achieve such
facilitation, each valid question, along with its associated
set of valid alternatives, is pre-defined5. This means that
even though the actual dialogues are defined and imple-
mented by the local administrations, all questions and their

manner. For this reason, these types can be reused across different coun-
tries and sectors. When initialised each object type is given a specific
“personality”; that is, there is an instance of a Norwegian Master, a
Finnish Master, a Danish Civil Registration Expert, a Finnish Tax Ex-
pert, etc. Several actual instances of each personality may be available to
provide resilience and load-balancing. For further details, see [6].

5Type-in is allowed as a valid alternative to some questions.



respective valid alternatives must be co-ordinated between
the participating administrations.

Briefly looking back, this pre-definition and co-
ordination activity is precisely that work aimed to develop
(one part of) a shared semantic framework within SPACE.
In this case, each element scrutinised for semantic equiv-
alence across Domains is a question along with its set of
valid alternative replies (see section 3.3). For SPACE, the
most important reasons for this effort are to ensure that:

1. even though several administrations may want to ask
some of the same questions, the citizen only sees such
questions once, and

2. when one question is posed and answered, all inter-
ested administrations know how to interpret the an-
swer.

Pre-definition of questions and their alternatives is per-
formed in two steps. First, each question and each al-
ternative is assigned a unique identifier. Second, an as-
sociation between a question and its valid alternatives is
created. This association is referenced using the ques-
tion’s identifier. For example, assume one wishes to ask
a user: “What is your civil status?”, along with a set of
valid alternatives: “Single”, “Married”, “Legal partner”,
“Widow/widower”. The question itself could be given the
identifier civ_stat, and the alternatives identifiers such as
single, married, partner and widowed, respectively.

All the questions, alternatives and their associations are
stored and published within a central question repository.
The repository is available during execution as well as dur-
ing dialogue development. The dialogue agents only pro-
vide the identifier for the questions - and thus the associ-
ations - they need the client to present for the user. It is
then up to the dialogue agent environment to retrieve the
language-dependent renderings for each of the questions
and alternatives. Incidentally, these unique identifier also
facilitate multi-lingual dialogues (see section 4.9).

The SPACE Dialogue Agents are written in a language
called SDDL6. SDDL defines three basic building blocks:
question references, parameters and events. A question ref-
erence refers to a specific association of a question and
its valid alternatives. Each question also has an associ-
ated parameter which has the same name as the question’s
id; the parameter’s value is automatically set according to
the answer supplied for the question7. Parameters are in-
ternal variables for storing data. To enable run-time co-
ordination, all parameters are located in the same name-
space. This means that a specific dialogue agent may have

6The SPACE Dialogue Definition Language. A small example is given
in Table 3.

7For example, when a user answers “Married” to the question about
his/her civil status, the parameter civ_stat is assigned the value married.

access to parameters set by previously-executed dialogue
agents, as well as those set by its own contemporaries.

Pre-conditions can be specified in SDDL, making it
possible to create dependencies amongst questions, such
that the presentation of any question can be made depen-
dent upon the answers supplied for other questions.

Events are actions that occur based upon certain tests;
such tests usually involve a parameter value being logically
or arithmetically compared to some other value. Events
may be used to set values for one or more other parameters.

The SPACE dialogue agent environment is capable of
retrieving and executing SDDL scripts. It knows where to
place relevant questions on the screen, how to order and
group them, and how to propagate answers supplied by the
users to the different dialogue agents. It is also responsible
for controlling when to retrieve new dialogue agents, and
for handling the results of the dialogue.

4.6 Interaction Model

The SPACE Client user interface is built around some
central design principles. These include a task- oriented,
single screen-page approach; and, a “what-you-can-see-
is-what-you-can-do-right-now” principle [5]. These influ-
ence the dialogue mechanism in that

1. everything must be designed to fit on one screen-page,
and

2. some sort of logical order within tasks must be imple-
mented.

The single screen-page used is designed with general
screen areas available for different purposes. There are ar-
eas for user input, task-flow and system control, as well as
for displaying help texts and information retrieved from the
system. With respect to dialogue handling, the user input
area is the most important screen area. Here, questions are
posed to the user using standard screen components such
as input fields and drop-down boxes.

When a question has been answered, pre-conditions
may render other questions relevant; in such cases, these
other questions are immediately displayed within the user
input area. This behaviour is controlled by the dialogue
agents. When all relevant questions have been answered,
the client uses the user- supplied replies to retrieve infor-
mation from the server components (see section 4.2).

4.7 Execution Model

In the SPACE System, the total dialogue is divided into
levels. Each level has specific sources and dependencies.
Table 2 shows the sources of dialogue agents for each level,



Level Source Dependencies
0 Local

Master
All local Masters deliver the same
level 0 dialogue agent. This agent is
responsible for European and cross-
country co-ordination.

1 Country
Master

Each country can deliver a level
1 dialogue agent. Which country
Master(s) do so is determined by
the replies supplied to the level 0 di-
alogue. Level 1 dialogue agents are
responsible for inter-country and
cross-sectoral co-ordination.

2 Sector
Expert

Each sector Expert can deliver a
level 2 dialogue agent. Which Ex-
perts do so is determined by the
replies supplied to the level 0 and
level 1 dialogues. Level 2 di-
alogue agents are responsible for
inter-sectoral co-ordination.

Table 2: SPACE Dialogue Levels

dependencies between different dialogue levels, and the
co-ordination responsibilities of each level.

In the SPACE System, the dialogue levels and the ser-
vice architecture structure are essential in enforcing Euro-
pean, country, and sector-level policies. This is achieved
partly by the strict communication patterns, and partly by
retrieving and executing one level of dialogue to comple-
tion, before a new level is loaded. Prior to retrieving a new
level of dialogue, the system fixes the values of all param-
eters set by agents from earlier levels. Fixing parameter
values in this way is essential, since the script contained
within each new dialogue agent can logically depend upon
those values8.

When the SPACE Client initialises itself, it contacts its
local Master and retrieves the level 0 dialogue agent. The
agent is instantiated, textual renderings for the questions
are retrieved by the local Master and the dialogue is exe-
cuted. When all the level 0 questions have been answered,
parameters set by the level 0 agents are fixed, and level
1 dialogue agents are thereafter retrieved from the desti-
nation country Master. The level 1 dialogue is then inter-
preted, rendered and executed. At this point, the parame-
ters set by both the level 0 and level 1 dialogue agents are
fixed, prior to the retrieval of the level 2 dialogue agents.

For level 2 dialogue agents, the destination country
Master is called and the call is propagated to all the sector
Experts in that country. The Master collects the dialogue
agents from those Experts and returns them to the client.

8See the discussion of ‘Logical Selectors‘ in section 4.8.

The client interprets, renders and executes this dialogue. If
a question is requested by more than one dialogue agent,
it will be shown at most once in accordance with a logical
union of any pre-conditions.

Use of a logical union in these circumstances is judged
to be the most fair manner by which to resolve pre-
conditions supplied from different dialogue agents. Ulti-
mately, such pre-conditions could be in conflict with one
another, since each agent must be allowed to maintain its
own view as to what constitutes logical consistency. Con-
sidering Figure 1 and the user interface, this equates to a
simultaneous presentation of elements from different Do-
mains - in this case, questions to the user and their valid
alternatives.

Here, the total set of questions displayed to the user
could implicitly contain logical conflict or, of equal sig-
nificance, contain conflicts which disturb the users percep-
tion of and/or understanding of the system. As mentioned
earlier, we argue that work aimed at developing a shared
semantic framework helps reduce the likelihood of such
occurrences. In SPACE, certain problems of this kind were
eliminated in advance through the use of dialogue levels
and by mapping these levels to the server component hier-
archy (see figure 2).

Table 3 shows a small example of a sequence of dia-
logue scripts. The level 0 dialogue was delivered by a Lo-
calMaster. The level 1 dialogue may have been delivered
by a Norwegian CountryMaster and level 2 by a Norwe-
gian Vehicles and Driver License Expert.

Level Script
0 ask departure

ask destination

1 ask age

ask citizenship

2 ask drivers_license

if age >= #18

event age < #18

set drivers_licence = no

Table 3: A small SDDL example

Dialogue agents are one of two parts of the dialogue ex-
ecution. The result of the first part of the dialogue execu-
tion is a number of answers to question. This constitutes a
specification of the moving citizen’s situation. The SPACE
Dialogue Architecture includes mechanisms for acting on
the basis of this specification. For instance, such specifica-
tions can be used to retrieve advice about moving which
has been tailored to the citizen’s situation. In addition,
these specifications can be used to determine exactly which
data elements will be required, by the destination adminis-



trations, for Citizen registration (see section 4.2). For ex-
ample, the result of the dialogue in table 3 may be used
to retrieve advice about how to handle driver’s licenses in
Norway.

4.8 Implementation and Infrastructure

The SPACE System is implemented as a distributed ob-
ject system. The client is implemented as a Java applet9

while the server objects are implemented using C++. Dis-
tribution is realised using a CORBA 2.0 compliant orb10.
In the basic system there are generic implementations of a
full Master and of Experts. As mentioned on page 5, these
generic implementations may be given specific “personali-
ties” during initialisation. All communication between the
client and the different server objects is handled by a Mas-
ter object. Figure 3 shows the relevant interfaces for this
object.

CountryMaster
get_script_next
get_advice_fragment

LocalMaster
get_script_first
get_questions
get_advice

TargetMaster
get_requirements

FullMaster

Figure 3: The SPACE Master Interface

Level 0 dialogue is retrieved by the LocalMas-
ter.get_script_first method. All textual renderings for the
dialogues are retrieved using LocalMaster.get_questions.
Level 1 and 2 dialogues are retrieved using CountryMas-
ter.get_script_next. For level 2 dialogues this call is propa-
gated to the country’s Experts which all have similar meth-
ods. The return value for LocalMaster.get_script_first and
CountryMaster.get_script_next is an octet array containing
a script written in SDDL. LocalMaster.get_questions re-
turns a sequence of questions with valid alternatives.

During the dialogue execution, the SPACE Client has a
partial specification of the moving citizen’s situation. This
specification may be used by the Master call:

CountryMaster.get_script_next The partial specification
used here consists of the answer to previous dialogue
levels (0 and possibly 1). This specification is used by
the involved objects to determine exactly which dia-
logue script to return.

After the dialogue execution, the SPACE Client has a
complete specification of the moving citizen’s situation.
This specification may be used by the Master calls:

9The SPACE Client employs JDK 1.0.2, making it suitable for most
web-browsers.

10DAIS 3.2 from ICL.

LocalMaster.get_advice Here the specification is used to
construct an Advice Package, a document providing
advice which has been tailored to the citizen’s moving
situation.

TargetMaster.get_requirements Here the specification is
used to determine exactly which information elements
will be required by the destination administrations.

The central mechanism for determining which elements
apply to a given specification is called a Logical Selector11.
Within the services provided by the Master and Expert ob-
ject instances, the purpose of the Logical Selectors is to
perform analysis of the replies supplied during dialogue.
The results of such analysis is to determine either

� which new dialogue agent to return to the client (i.e.,
the get_script_next service);

� which advice is relevant to the specification (i.e., the
get_advice and get_advice_fragment services); or,

� which data elements are required for registration
within a foreign state (i.e., the get_requirements ser-
vice, see also section 4.2).

In the SPACE System, dialogue agents and logical se-
lectors are stored in database tables. Each object type
(LocalMaster, CountryMaster, Expert and so on) has a
specific set of database table structures associated with
it. Each object personality (Norwegian CountryMaster,
Finnish Civil Registration Expert) has specific instances of
these tables. Each LocalMaster and CountryMaster per-
sonality has its own dialogue_definition_table, contain-
ing all its dialogue scripts. In addition each Country-
Master has a dialogue_selector_table containing the LSDL
expressions used to determine which dialogue scripts
to return. Similarly there exists advice_tables and ad-
vice_selector_tables as well as requirements_tables and re-
quirements_selector_tables. In addition there is a common
repository containing things like the question repository.

As a result of this generic design, all that usually has to
be done to change the behaviour of the system is to change
the database content. In addition, the participating admin-
istrations may change their own tables independently. The
underlying CORBA infrastructure even allows administra-
tions to change their own implementations, as long as they
strictly abide to the specifications of the service interfaces.

4.9 Other Aspects

The aspects described above are the generic aspects of
the SPACE Dialogue Architecture. The architecture also

11Logical Selectors are written in the Logical Selector Definition Lan-
guage, a subset of SDDL.



includes support for other aspects more specific to the
SPACE context.

1. Multi-lingual support: The SPACE System is de-
signed for international use, thus support for multiple
languages is an inherent part of the user-interface de-
sign. For the dialogue, this is achieved by including
several languages within the question repository.

2. Information from databases (e.g., in SPACE, those
owned by various public administrations): The
SPACE Dialogue Architecture includes support for
retrieving values for parameters from these kinds of
databases. This means that instead of asking the user
for his ‘age’ and ‘marital status’, corresponding val-
ues for these parameters can be retrieved.

5 Other Implementations of the Unified Di-
alogue Architecture

The SPACE Dialogue Architecture is only one imple-
mentation of the Unified Dialogue Architecture. The ar-
chitecture can also be implemented in other ways, and ap-
plied to other domains. The following sections address the
different aspects of dialogue handling with respect to these
issues.

5.1 System Context

The Unified Dialogue Architecture may be employed
within any system context which involves the use of dis-
tributed systems. A given system context will influence all
the other aspects of unified dialogue handling. Even so, it
is possible to implement one dialogue architecture which
can facilitate several different system contexts. Here, we
will briefly describe how the SPACE implementation may
be applied to system contexts other than the original.

The SPACE Dialogue Architecture described in section
4 is not exclusive to movement within the EU. It may also
be relevant for supporting movement between other nations
as well as movement within a single country. The solution
is not restricted to supporting movement either. For in-
stance, the advice functionality can be applied to a wide
range of subjects. The only limitations are that sensible
dialogues can be constructed and that the resulting specifi-
cation can be used to tailor an advice (or any other infor-
mation) package.

5.2 Service Architecture
The Unified Dialogue Architecture is not strongly con-

nected to any kind of object model or service architecture.
The dialogue architecture can handle arbitrary object and
invocation models as long as each object adheres to the

specific interaction and execution models; use of interop-
erable implementations and infrastructures is an obvious
precondition.

The SPACE system illustrates a good example of how
system context can influence service architecture. The
SPACE Service Architecture is strongly influenced by ad-
ministrative and security issues. The different object types
are based upon logical abstractions of existing governmen-
tal and administrative structures. Security and policy issues
dictate the division into countries, as well as any further re-
strictions on object relations and method invocations.

5.2 Interaction and Execution Models

In implementing the architecture, the interaction and ex-
ecution models should be considered together. Here we ex-
emplify extensions of the SPACE Dialogue Architecture.
Other implementations may of course use other models.

One possible extension is to relax the restrictions upon
the number of dialogue levels. This yields an arbitrary
number of levels based on dependencies and arbitrary
sources for each level. In the context of the SPACE system,
this would mean that every server component could deliver
dialogue agents for level 0 or any other level. It also means
that the number of levels would not be not fixed.

Another possible extension is to relax the strict task-
order (first complete the dialogue, then process the results).
This could yield a more interactive system, where required
elements, advice or other specification-dependent data are
shown on the screen as they become relevant. Here, the
execution model should be taken into careful considera-
tion. Depending on the object model, this kind of interac-
tion could lead to a great deal of communication between
the client and the server objects, or to very large dialogue
agents.

A third possibility is to make the dialogue agents re-
sponsible for controlling when to retrieve new dialogue
agents. This removes the level restrictions completely
while still retaining the necessary co- ordination facilities.
Another option is to extend the support for input compo-
nents to graphical constructs, voice recognition, etc.

5.3 Dialogue Agents and the Dialogue Agent En-
vironment

Capabilities of dialogue agents and specific character-
istics of the dialogue agent environment must be consid-
ered when implementing the Unified Dialogue Architec-
ture. One possibility is to extend SDDL to achieve the
functionality desired. Another possibility is to use a stan-
dard scripting language such as Tcl/Tk [14]. A third pos-
sibility is to implement the dialogue agents in Java. There



are essentially three ways of approaching this latter alter-
native:

1. Use of Java source code. This means that the client
must be able to compile and execute this code. (Re-
quires compilation facilities in the client)

2. Use of static Java executables. This means download-
ing a class file, instantiating and executing it. (Avail-
able in JDK 1.0.2)

3. Use of dynamic Java executables. This means serial-
ising a running object on the server, transferring it to
the client and executing it there. (Available in JDK
1.1)

Of these, the two latter ones are the most interesting
ones since the necessary features are already an integral
part of Java. The most fascinating aspect of this solution
is the ability for the client to provide common services for
dialogue agents and putting the logic and content inside
server-provided Java classes. This enables dialogue agents
to contain method calls necessary to invoke services on
server objects. This feature may be very important in cases
where the server objects are heterogeneous or when they
employ different types of communication (e.g., CORBA,
RMI, DCOM).

A possible extension to the dialogue environment could
be to allow parts of the environment to be made up of spe-
cial agents. This would allow some of the service providers
to provide their own special parts of the dialogue environ-
ment, whilst sharing the basic environment facilities. This
could facilitate co- ordination and interoperability in com-
plex and highly heterogeneous systems.

5.4 Implementation and Infrastructure

The implementation and infrastructure are of course
highly dependent upon the other aspects. Still, some gen-
eral observations can still be made. For the server com-
ponents, any implementation method suitable to the local
system environment may be used, as long as a suitable in-
frastructure can be built.

Using Java in the client offers significant advan-
tages. This includes the ability to run the client in most
web-browsers, built-in support for implementing dialogue
agents in Java, and pre-defined and adjustable security fea-
tures. This does not mean that other programming lan-
guages may not be suitable, especially in homogenous
environments (e.g., Microsoft Windows based environ-
ments).

The SPACE System uses CORBA as its communica-
tion platform. The Unified Dialogue Architecture is not

strongly connected to this standard. Other ORB technolo-
gies (such as Microsoft’s DCOM) may also be employed.
The only requirements are that the different objects must be
able to talk to each other and pass dialogue agents amongst
themselves. Thus even HTTP or pure transport protocols
such as TCP/IP may be used.

6 Application Areas for the Unified Dialogue
Architecture

The Unified Dialogue Architecture is independent of
system context. When applied to a system context, how-
ever, there is an implication for system co-ordination.
These areas include:

� co-ordination across component owners during design
of the dialogue agents,

� administration and maintenance of dialogue agents,
and

� runtime co-ordination within the dialogue agent envi-
ronment.

Because of its flexibility, the Unified Dialogue Archi-
tecture may be employed in a wide variety of distributed
object systems. It offers clients wherein the user dialogue
is controlled by dialogue agents, not hard-coded into the
client. It may be particularly well-suited to heterogeneous
system environments. Possible applications of the Unified
Dialogue Architecture include:

� Domain-Specific Systems. The Unified Dialogue Ar-
chitecture can enable consistent, adaptable interfaces
for distributed administrative systems such as a bank-
ing, accounting or case-handling. Other domain-
specific applications are also possible.

� Unified Interface to Search Engines. This architec-
ture can be used to build intelligent interfaces for
search engines. This may be particularly useful in
cases where the underlying databases are heteroge-
neous. Each server can then deliver its own dialogue
script for execution. This approach can be used to de-
velop a single, unified interface for things like Z39.50
and X.500 engines, and web-searching tools. Similar
solutions are shown in [12] and in [18].

� Information Package Construction. This is equivalent
to the advice functionality of SPACE. Several server
objects know how to deliver different parts of a pack-
age and may employ the dialogue architecture to tailor
their parts.



� Surveys and Direct-Marketing. Since the Unified Di-
alogue Architecture can deliver specifications of the
user, it can also be used to facilitate survey or direct-
marketing services.

The Unified Dialogue Architecture is particularly well-
suited for access to services through a central access point.
This includes access through an information kiosk (e.g.,
customer guidance in a shopping mall), and access through
a common web-service (e.g., to government information
normally open and available to the public).

7 Conclusion

The trend towards net-centric computing introduces
new challenges in systems design. The Unified Dialogue
Architecture is a significant contribution to this type of de-
sign. It enables a client which can handle a wide range of
different user dialogues based on input from server com-
ponents. The logic and content of the dialogues is not de-
termined by the client but rather by the server components
themselves. Furthermore the user dialogue is not known by
the client until run-time. This enables new systems to be
built which employ distributed object technologies, while
still giving the impression of a single, consistent applica-
tion.

The object-oriented solution described is very flexible,
yet still concrete enough to be applied to a wide range of
problems without large amounts of re-design work. Some
of the core functionality is available as easy to use compo-
nents. Once a system is built, it is easy to add (or remove)
server components without changing the existing ones.

8 Status and Future Work

The SPACE Dialogue Mechanism as described in sec-
tion 4 has been implemented and tested. The Unified Dia-
logue Architecture as outlined in sections 3 and 5 has been
partially designed. Future work includes:

� Formalisation of specification and usage guidelines
based on systems development research. [9] presents
open implementation design guidelines which may
be relevant. [4] discusses how to hook into object-
oriented application frameworks. This may be useful
in designing usage guidelines.

� Consideration of dynamic interface issues such as
look and layout [8], as well as other types of user input
[13]. This includes investigating possibilities within
newer Java releases (i.e., Java Foundation Classes)
and other libraries.

� Following up and implementing some of the aspects
described in sections 3 and 5. This includes for-
malising the dialogue agent environment and refining
reusable components in the service architecture and in
the dialogue agent environment.

� In the SPACE Dialogue Architecture, the dialogue
and its use are strictly separated. One possible area
of interest may be to automatically generate dialogue
agents based on requirements for the specifications
(i.e., how parameters are dependent upon each other).
Here techniques like those described in [1] may be
useful.

� Tool support for building the architecture may be use-
ful. This includes tools for building dialogue agents
(like in [11]), for defining and building the basic ser-
vice architecture and for customising the basic dia-
logue agent environment (i.e., the common client).

Acknowledgements

The architecture described here was designed as part
of the SPACE project [6, 7], therewith partially funded by
EU’s Telematics Applications Programme.

Thanks to Stein Myrseth for valuable discussions about
the design of this architecture. Thanks to Michael Gritz-
man and Jannicke Riisnæs for feedback on this paper.

References

[1] P. Castells, P. Szekely, and E. Salcher. Declarative
models of presentation. In J. Moore, E. Edmonds, and
A. Puerta, editors, IUI’97: 1997 International Con-
ference on Intelligent User Interfaces, pages 137–
144, 1997.

[2] P. R. Cohen, A. J. Cheyer, M. Wang, and S. C. Baeg.
An open agent architecture. In O. Etizoni, editor,
Proceedings of the AAAI Spring Symposium Series
on Software Agents, pages 1–8. American Associa-
tion for Artificial Intelligence, Stanford, California,
March 1994.

[3] S. Franklin and S. Graesser. Is it an agent, or just
a program?: A taxonomy for autonomous agents.
In Proceedings of the Third International Workshop
on Agent Theories, Architectures, and Languages.
Springer-Verlag, 1996.

[4] G. Froehlich, H. J. Hoover, L. Liu, and P. Soren-
son. Hooking into object-oriented application frame-



works. In ICSE’97: Proceedings of the 1997 Inter-
national Conference on Software Engineering, pages
491–501, 1997.

[5] M. Gritzman, A. Kluge, and H. Lovett. Task ori-
entation in user interface design. In K. Nordby,
P. Helmersen, D. J. Gilmore, and S. A. Arnesen,
editors, Human-Computer Interaction, Interact’95,
pages 97–102. Chapman and Hall, London, Glasgow,
1995.

[6] P. D. Holmes, A. Larsen, M. Grtizman, L. Lunds-
gaard, H. Shardhammar, and R. Pohjosmäki. Space
client and server specification: Infrastructure specifi-
cation for the space technical platform. EU Project
Report SPACE Deliverable D902/D903 (Confiden-
tial), 1997. Also reprinted as NR Technical Note Nr.
IMEDIA/06/97, December 30, 1997.

[7] P. D. Holmes, A. Larsen, S. Myrseth, and M. Gritz-
man. SPACE: An architecture for coordinated intra-
european assembly and exchange of citizen data. NR
Note IMEDIA/01/98, Norwegian Computing Cen-
ter (NR), 1998. Submitted to The 5th ISPE In-
ternational Conference on Concurrent Engineering,
Tokyo, Japan, July 15-17 1998.

[8] S. E. Hudson and I. Smith. Supporting dynamic
downloadable appearances in an extensible user in-
terface toolkit. In UIST’97: Proceedings of the ACM
Symposium on User Interface Software and Technol-
ogy, pages 159–168, 1997.

[9] G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda,
A. Mendhekar, and G. Murphy. Open implementa-
tion design guidlines. In ICSE’97: Proceedings of
the 1997 International Conference on Software Engi-
neering, pages 481–490, 1997.

[10] P. Maes. Intelligent interfaces. In J. Moore, E. Ed-
monds, and A. Puerta, editors, IUI’97: 1997 Inter-
national Conference on Intelligent User Interfaces,
pages 41–46, 1997.

[11] D. L. Martin, A. J. Cheyer, and G.-L. Lee. Agent
development tools for the Open Agent Architecture.
In Proceedings of the First International Conference
on the Practical Application of Intelligent Agents
and Multi-Agent Technology, pages 387–404. Lon-
don, The Practical Application Company Ltd., April
1996.

[12] D. L. Martin, H. Oohama, D. Moran, and A. Cheyer.
Information brokering in an agent architecture. In
Proccedings of the Seconds International Conference

on the Practical Application of Intelligent Agents and
Multi-Agent Technology. London, The Practical Ap-
plication Company Ltd., April 1997.

[13] D. B. Moran, A. J. Cheyer, L. E. Julia, D. L. Martin,
and S. Park. Multimodal user interfaces in the open
agent architecture. In J. Moore, E. Edmonds, and
A. Puerta, editors, IUI’97: 1997 International Con-
ference on Intelligent User Interfaces, pages 61–68,
1997.

[14] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley Publishing Company, New York, 1994.

[15] B. Schneiderman. Designing the User Interface:
Strategies for effective human-computer-interaction.
Addison Wesley Longman, 3rd edition, 1998.

[16] A. Scmitt. Dialogsysteme. Bibliographisches Institut,
Mannheim, 1983. In German.

[17] Y. Shoham. Agent-oriented programming. Aritificial
Intelligence, 60:51–92, 1993.

[18] A. F. Smeaton and F. Crimmins. Using a data fu-
sion agent for searching the www. School of Com-
puter Applications, Dublin City University. Glas-
nevin, Dublin 9, IRELAND.

[19] SPACE. Single point of access for citizens in europe,
telematics applications programme, project ad 1014,
technical annex (annex 1).

[20] L. A. Suchman. Plans and Situated Actions. Press
Syndicate of the University of Cambridge, 1987.


