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Abstract. We propose a statistical method for spatial interpolation of
ozone exposure in Norway, as measured by the accumulated dose above a
threshold of 40 ppb (AOT40). Space-time ozone data from 10 stations in
Norway during 1992 were modeled as the sum of a space-time mean field
and a space-time residual field. The mean field was taken as a combina-
tion of temporal functions and spatial trend fields. We suggest a reduced
rank method for spatial weighting of the temporal functions. After fitting
variogram functions to component fields, the spatial AOT40 field was in-
ferred by conditional simulation. Finally, the proposed model was checked
by crossvalidation.

1. Introduction

During Summer, European emissions of nitrogen oxides and volatile or-
ganic compounds give rise to episodes of elevated ozone concentrations,
which may prove harmful to humans and vegetation. Short-term peak con-
centrations are most harmful for humans, but vegetation is also damaged
by long-term accumulated exposure at moderate ozone concentrations. We
focus on the critical levels for forests, as measured by the exposure accumu-
lated over a threshold of 40 ppb (AOT40). The recommended critical level
given by UN-ECE (1994) to apply for forests is an AOT40 value of 10000
ppb h, accumulated during 1/4-30/9. In this study, we analyze space-time
ozone data from Norway during 1/4-30/9 1992 to interpolate the spatial
variable AOT40.

In the past years, space-time models have been fitted to atmospheric
variables by several authors. To some extent, the approach taken depends
on the objective of the study. For some alternative models, the reader may
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consult Hgst, Omre and Switzer (1995), Haas (1995), Sglna and Switzer
(1996), Carroll, Chen, Li, Newton, Schmiediche and Wang (1997) and
Wikle, Berliner and Cressie (1997).

The distribution of ozone in space and time is complex. Important
sources of variability are emission and weather patterns, North—South trends
in daylight, time of the day, local NO, sources, and local vegetation. A
common method for interpolating spatial data to unmonitored locations is
Kriging (Cressie 1991). This approach was taken by Tgrseth, Mortensen
and Hjellbrekke (1996), who aggregated space-time ozone data to spatial
AOT40-values and interpolated these values by Kriging. On the other hand,
Anderson and Smith (1997) describe a normal random effects model for
year to year values of AOT40 based on data from Great Britain and Ire-
land. They also state conditions under which AOT40 may be regarded as
approximately normally distributed.

The interpolated values and associated interpolation errors obtained
from Kriging may be unsatisfactory. At each spatial location AOT40 is a
non-negative random variable, therefore it will have a skewed probability
distribution. Kriging interpolation and Kriging interpolation errors may
not be realistic for skewed data. Specifically, Kriging interpolation intervals
are symmetric and could produce negative AOT40 quantiles. In contrast,
we present a richer analysis, which specifically takes into account observed
space-time features of the raw ozone data and also allows for skewness
of AOT40. By using a space-time model, we hope to translate structure
from the densely sampled time-domain to unobserved spatial locations. We
propose to do this by using a flexible parametric model for the time-trend
at the monitoring stations. This parametric time-trend model is selected by
rank regression (Davies and Tso 1982). The time-trend coefficients at each
monitoring station are interpreted as a realization of a set of spatial random
fields and the residual data are modeled as a realization of a a space-time
separable random field. Inference of ozone concentrations at for unobserved
locations in space-time are done by condotional simulation in space-time.
A conditional simulation of the spatial AOT40-field is obtained by time-
integration of the simulated space-time ozone field, as will be elaborated in
Section 3.2.

2. Norwegian Ozone Data

In this work we have analyzed Norwegian data for the period 1/4-30/9 1992,
which is a period with unusually high ozone exposure in Southern Norway.
Our data consist of ozone measurements from 10 monitoring stations, each
with 2805-4392 hourly values.

Figure 1 shows time series for each monitoring station for the period.
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Figure 1. Observations at the monitoring stations for the study period of 1. April — 30.

SPATIAL INTERPOLATION OF OZONE EXPOSURE

September, 1992.

Characteristic features are the generally high concentrations in April-
June, and an episode of elevated concentrations in late May and early June.
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All time series exhibit diurnal cycles in the ozone concentration, but the
amplitude of these cycles varies considerably among the sites and through
the year.

In contrast to Carroll et al. (1997), we did not see obvious signs of
skewness in the raw ozone data. We will see later that skewness in AOT40
may still be significant.

3. Method

Denote by y(x,t) the ozone concentration at spatial location & and time ¢.
Let y(x,t) have the decomposition

y(x,t) = g'(@) h(t) + v(,). (1)

Here, g() is a p-vector of spatial trend fields, h(t) is a p-vector of temporal
structure functions and v(x,t) is a zero-mean space-time residual field,
independent of g. The vector h(t) spans a wide class of temporal structure
functions, chosen to reflect trend, seasonal and diurnal effects. Therefore,
(1) describes a class of models, within which we will select a particular
model for the present study. In general, one might include other covariates
in the g- or h-functions.

The motivation behind the decomposition (1) is that systematic (trend)
and non-systematic (residual) temporal fluctuations may have different spa-
tial persistence. In particular, residual fluctuations in time may have only
local influence, while systematic temporal fluctuations may vary slowly with
geographic location. Thus, by modeling trend and residual separately we
may obtain more precise inference for ozone concentrations and AOT40 at
unobserved locations. Each gx(x); K = 1,...,p is taken as a realization
of a second-order stationary random field. A feature of this approach is
that uncertainty about the trend model will be specifically incorporated in
the error estimate when interpolating AOT40 to unobserved locations. The
second-order properties of the residual v(x, t) is specified by the space-time
covariance function

Cov{v(a',t'),v(z",t")} = o® po |z’ —a"|l;dz) pe(lt' —";ds).  (2)

Here, o2 is the residual variance, while p;(-;d;) and ps(-;d;) are correlation
functions with range parameters d, and d;, respectively. The separable
form of the space-time correlation function was chosen for convenience, but
is commonly used in space-time analysis, see Rodriguez-Iturbe and Mejia
(1974), Sglna and Switzer (1996). We will see later that this particular
choice allows for efficient simulation.
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3.1. MODEL SELECTION AND PARAMETER ESTIMATION

The problem of model selection resembles the choice of the smoothing pa-
rameter in non-parametric or multivariate regression. Within these branches
of statistics, it is well-known that restricted estimates may reduce parame-
ter uncertainty and give better predictions at the cost of some bias (Frank
and Friedman 1993). In our case, we select a rank parameter K < p, where
K + 1 is the efficient number of spatial trend fields we will use. Given K,
we have a specific model, and we obtain values of the g-fields and v-field
at the spatial and space-time locations, respectively. Now, the covariance
parameters o2, d,, and d; may be estimated for the space-time residual
field, and similar parameters are estimated to facilitate interpolation of the
spatial trend fields. Variability not accounted for in the estimated trend
will be specifically incorporated in the estimated space-time residual field.
We introduce matrix notation for the space time data

Y=HG+V.

The elements of these matrices are (Y);; = y(x;,t;);¢ = 1,...,n;j =
L...,m, (H)]k = hk‘(tj)ﬂ J=1L....m;k=1,...,p, (G)kz = gk(mz), k=
L...,p;i=1,... ,nand (V)j; =v(x;,t;);i=1,... ,n; j=1,... ,m. We
select the rank K by a procedure borrowed from reduced rank regression,
as described by Davies and Tso (1982) and Aldrin (1996). The idea is to
estimate G by constrained least squares, the constraint being that the es-
timate should have rank K. The usual procedure for selecting K when the
residuals are uncorrelated is cross-validation, as described by Aldrin (1996).
However, this may not work well if the residuals are correlated (Diggle and
Hutchinson 1989, Hart and Wehrly 1986). A reasonable procedure in the
present case is to choose the smallest possible K which allows for elimina-
tion of the main temporal structure in the residuals. Optimal procedures
for model selection when the residuals are correlated in space-time is a topic
for future research. The main ingredient of reduced rank regression is the
singular value decomposition. Following Aldrin (1996), the reduced rank
estimate of G may be expressed

K
- !
G = Z bkak,
k=1
where ay is given by singular value decomposition

r
(nH'H) ?H'Y = Y Muya.
k=1
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Here, r is the rank of (nH'H)~'/2H'Y , and by, is given by
1
by = \e(=H'H) %,
n

Now, the rank K estimate of g at location x; may be expressed

K
glwi) = Y ap(@i)by. (3)
k=1

Here, by, ... ,bg are ranked vectors of weights for the temporal structure
functions. For each k we take the coefficients ax(x;);7 = 1,... ,n as realiza-
tions of second order stationary spatial random fields with constant mean
and we fit variograms to these fields. In geneal, the a-fields may be cross-
correlated. In addition comes an intercept term, which we denote by ag(x).
The advantage of (3) is that we can now fit spatial models to the (K + 1)
ay- fields instead of the p gi-fields. This may be of great help if K can be
chosen small. In the present case, we follow Aldrin (1996) and replace (3)
by a slightly more general expression that allows for missing data.

The main focus of this study is not to study elaborate methods for
parameter estimation, therefore we have used the following simple proce-
dure. First, empirical residuals were calculated by subtracting estimated
structure components HG from data values Y. Then the spatial correla-
tion range parameter d, was estimated by fitting an exponential correlation
function by the method of Cressie (1991, pp. 74-75). A similar procedure
was used in the time domain to estimate d;. To reduce effects of missing
data, o was estimated as follows. For each observation time tj, the usual
bias-corrected maximum likelihood (Cressie 1991, pp. 91-92) estimate 8]2-
was found using the available observations and plugging in the estimated
spatial correlation matrix. Then 52 was taken as the weighted average of all
the c’sz’s, the weights being proportional to the number of observations used
at each time ¢;. For the ay, ... ,ax coefficient fields a correlation range was
fitted graphically to the empirical variogram. Then each variance parameter
was fitted as explained above.

3.2. INTERPOLATION OF AOT40

The accumulated exposure above 40ppb (80ug/m?) is defined as
Ae) = | yl@t) y(a,t) > 40ppt) dr,
T

where T is the growth period 1/4-30/9.
For the time period T, we generate realizations of the spatial AOT40-
field by conditional simulation from the estimated statistical model given
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the data Y. After generating 1000 simulations, we infer the relevant statis-
tics such as the spatial mean- and median-fields, confidence levels, ex-
ceedance probabilities, or excursions above high levels.

Since v(x,t) is a zero-mean space-time separable random field (Cressie
1991), we construct a realization from a spatial field having correlation func-
tion p, and a temporal process having correlation function p;. It is easily
verified that the product of two such independent (zero mean) processes has
the correlation structure given by (2). Thus, we obtain a great reduction of
computational effort, because we do unconditional space-time simulation
by simulating separately in the spatial and temporal dimensions. In this
application, we have used two independent Gaussian processes, giving a
space-time field which is second-order stationary.

The exponential correlation functions we used are well-suited for un-
conditional simulation by the screening sequential algorithm, see Omre,
Sglna and Tjelmeland (1992). From the unconditional simulations, condi-
tional simulations are generated as described in Cressie (1991, pp. 207-209).
Each simulation consists of one spatial simulation for each of the a-fields
and one space-time simulation of the residual field. The ag-fields are condi-
tioned on the estimated coefficients at the data locations, while the residual
field is conditioned on estimated space-time residuals.

4. Results

The temporal basis functions h(t) = (hi(t),... ,hp(t)) must be chosen to
capture the main temporal structure of the ozone data. We have used p =
85, with temporal functions as follows. To capture diurnal variation, one
indicator function for each hour of the day was introduced. Furthermore,
a linear function was used to capture trend, trigonometric functions with
long period were chosen to capture long-term variability, and sinusoids was
used to account for the early Summer episode in Southern Norway. Finally,
cross-terms of long-term and diurnal functions were used to reflect long-
term fluctuations in the diurnal variation.

After deciding on the basis functions h(t), the reduced rank procedure
was used to fit a weighted combination of basis functions to the data. We
used rank K = 2, giving 3 spatial trend functions to fit. This choice seems
to remove most of the temporal structure in the data, and it explains 46—
79% of the total variance at the monitoring stations. Even with the complex
trend model the space-time residuals are correlated, but this correlation is
mainly positive and of short range. The main temporal structure component
b\ h(t) (+constant) is shown in Figure 3, decomposed into diurnal and
seasonal effects. We see that the main seasonal component (Figure 3a)
has a maximum in early June, with decaying values towards the end of
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the season. This maximum is a special feature of the year 1992 and is
related to unusual meteorological conditions. The main diurnal component
(Figure 3b), has a minimum in the early morning and a maximum in the
afternoon. The seasonal diurnal amplitude (Figure 3c) has a maximum in
late June.

An exponential correlation function p(h;d) = exp(—3h/d) was fitted
to each of the ag-, a;- and as-fields. The fitted range parameter was d =
750 km for all three fields. The estimated space-time residual seemed to fit
well to exponential covariance functions p, and p;. The fitted parameters
were d, = 345km, dy = 44 hours and ¢ = 9.5 ppb. Figure 2 (right panel)
shows the estimated exceedance risk for the 10000 ppb h critical level, based
on 1000 simulations. The estimated exceedance risk is defined as 100 x
P, where p is the estimated exceedance probability. The map shows that
exceedance/non-exceedance can only be determined accurately close to the
monitoring stations, based on the present statistical analysis. On the other
hand, the estimated risk of exceedance in Northern Norway is usually less
than 25%, while for large areas in Southern Norway this risk is above 50%.
The locations of the monitoring stations are shown in the left panel of
Figure 2.

4.1. MODEL VALIDATION

First, we checked our interpolations against hourly concentrations of three
monitoring stations not used in the analysis (shown by triangles in Fig-
ure 2). Interpolating the available observations at these stations by our
model gave (true) root mean square interpolation error (RMSIE) of 20.5,
13.0 and 17.1 ug/m? for stations Nordmoen, Prestbakke and Svanvik, re-
spectively. The estimated RMSIE from the statistical model were 21.2, 16.7
and 18.1 pug/m?3, which is very similar.

To further check the statistical model, the following cross-validation ex-
ercise was carried out. Each monitoring station was deleted from the data
set and the AOT40 value was computed from 1000 conditional simulations
using all other data. Figure 4 shows a fitted probability density of cross-
validated AOT40-values at the monitoring stations. As expected, we see
that the densities are skewed with heavy right tails. We also see that the
observed AOT-values have fairly large estimated probability density, indi-
cating that the model is reasonable for interpolating AOT40. The crude
RMS error of the 10 cross-validated minus observed AOT40 values were
4586 ppb h. On the other hand, the empirical variance of the cross-validated
AOT40 values were 8131 ppb h. This indicates that the true uncertainty in-
tervals of the present interpolator may be smaller than the corresponding
model-estimated intervals.
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Figure 2. Left panel: Study area and location of monitoring stations. Filled circles are
stations used in the analysis, triangles are validation stations. Right panel: Estimated risk
(100 x p) of exceeding the critical level of 10000 ppb h AOT40.
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5. Concluding Remarks

We have presented a general statistical model for fitting of geographi-
cally located time series of ozone concentrations with the purpose of spa-
tially interpolating accumulated ozone concentration above a threshold.
The method gives interpolated values and precision estimates for AOT40
exposure. Thus, we may give estimates of the quantities such as confidence
intervals or the probability of exceeding critical levels. The method may also
be used to interpolate hourly ozone concentration for any time and loca-
tion within the domain of study. Furthermore, the method tolerates missing
data in the observed data series and gives a consistent method for incorpo-
rating such data series in the analysis. Within the proposed framework, we
may analyze in detail particular events of high concentrations, or generate
time series of ozone for use in the study of effects on the environment.

The space-time separability has been used to obtain fast simulations of
the residual process. Furthermore, the present exponential covariance func-
tion allows for efficient computations in the spatial domain due to screening
effects (Cressie 1991). We hope that the limitations of these simplifying as-
sumptions may be checked through future work.
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Figure 4. Density of cross-validated AOT/0-values at the monitoring stations. Also shown
18 the observed AOT40-value (vertical full line) and the model estimate (broken wvertical
line).
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