
Estimation of a Neyman-Scott process
from line transect data by a
one-dimensional K-function

Magne Aldrin

Norwegian Computing Center,

P.O. Box 114 Blindern, N-0314 Oslo, Norway

email: magne.aldrin@nr.no

Marit Holden

Norwegian Computing Center (as above)

email: marit.holden@nr.no

Tore Schweder

Norwegian Computing Center (as above) and

Department of Economics, University of Oslo,

P.O. Box 1095 Blindern, N-0317 Oslo, Norway

email: tore.schweder@econ.uio.no
1



Summary

We consider the problem of estimating the parameters of a two-dimensional Ney-

man-Scott process, from data collected through a line transect survey. Cowling

(1998) suggested an estimation method based on a one-dimensional K-function

along the transect line. However, her expression for the theoretical K-function was

wrong. We develop the correct K-function. We further carry out a simulation study,

where we show that the one-dimensional K-function method outperforms a

method previously suggested by Hagen and Schweder (1995).
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1 Introduction

The spatial (here two-dimensional) distribution of a biological population may

often be modelled by a spatial point process. We will consider one such process,

the Neyman-Scott process, which is suitable for modelling clustered populations.

Points (or objects) are observed by a line transect survey. The probability of

detecting points decreases rapidly as a function of the perpendicular distance x

from the transect line, so only points close to the transect are detected. Our aim is

to estimate the parameters in the Neyman-Scott process from such data.

One way of characterising the spatial dependency in a point process is by the so

called K-function. If all points are observed within a region, the model parameters

may be estimated by fitting the theoretical K-function to its empirical counterpart

(Ripley, 1977;. Diggle, 1983 and Cressie, 1991). However, when the points are

observed by a line transect survey, the underlying Neyman-Scott process is

thinned to a nearly one-dimensional point process.

Hagen and Schweder (1995) proposed an estimation method for use in line

transect surveys for minke whales. They constructed a rectangle centred along

the transect line, with the same length as the transect, and width equal to the area

under the detection curve (the effective strip width), and assumed perfect obser-

vation within the rectangle. Then they projected the detected points onto the

transect line (the y-coordinates). Finally, they estimated the parameters by fitting a

two-dimensional theoretical K-function to a two-dimensional empirical K-function.
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Thus, even if they used only one dimension of the data, they used a two-dimen-

sional K-function.

The rationale for ignoring the x-coordinates is that the distance to the transect line

is usually considerable shorter than the transect length, and that most of the infor-

mation about the spatial pattern is contained in the coordinate along the transect.

Cowling (1998) attempted to construct a wholehearted one-dimensional estima-

tion method, based on a real one-dimensional K-function along the transect line.

However, there are a couple of serious errors in the theoretical development of the

method, leading to a wrong K-function. Cowling (1998) tested the method in a

simulation study, but did not compare the results with the method of Hagen and

Schweder (1995).

In this paper, we follow the idea of Cowling (1998), but develop the correct K-func-

tion. Then we carry out the same simulation study as Cowling (1998), with some

small modifications, where we compare the corrected version of Cowling’s method

to the method of Hagen and Schweder (1995). Our corrected version of Cowling’s

method clearly outperforms the method of Hagen and Schweder (1995).

2 Parameter estimation of the Neyman-Scott process

2.1  The Neyman-Scott process and the detection function

The definition of a Neyman-Scott process is found in for instance Cressie (1993,

p. 662). We will consider the following special version:
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• Invisible parent events are Poisson distributed with intensity  (per unit area).

• Each parent independently produces a Poisson( ) number of offspring.

• The positions of the offspring relative to their parents are independent and have

an isotropic bivariate normal distribution with variance in both x- and y-direc-

tion.

The detection function g(x) is the probability of detecting an offspring at a distance

x from the transect line. We will assume a normal detection function,

(1)

where  is the detection probability at x=0. The two parameters  and

 are typically estimated from external data (Buckland et. al. 1993, Schweder et.

al. 1999), and are assumed known in the present context. Cowling (1998)

assumes , but this assumption is unnecessary. For North-Atlantic minke

whales  is around 0.35 due to diving etc. The effective strip width is

(2)

where  is the effective strip half-width.

Suppose that a line transect survey of infinite length is carried out along x=0, and

consider a parent located at x=c. Let T denote the detected offspring in that clus-
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ter. Cowling (1998) shows that conditioned on c, the expected number of detected

offspring is

(3)

where . Further, the conditional distribu-

tion of T is Poisson, i. e. .

2.2  Parameter estimation

The plan is now to project the detected points onto the transect line, calculate the

theoretical K-function for the resulting one-dimensional process, and fit it to the

empirical one-dimensional K-function.

The K-function (Ripley, 1977) of a stationary spatial point process with intensity

is defined as

(4)

Cressie (1993, p.665) gives the K-function for a d-dimensional Neyman-Scott

process. In one dimension this becomes

(5)
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where F(h) is the distribution function of the distance between two points in the

same cluster,  is the intensity of the one-dimensional parent process, and T is

the number of offspring in a cluster.

The one-dimensional process will still fulfil the conditions for a (stationary and iso-

tropic) Neyman-Scott process. The offspring will be normally distributed around

the cluster centres, and

(6)

where  is the distribution function of the standard normal distribution (Cowling

1998).

However, even if T is Poisson conditional on the x-coordinate of the cluster (x=c),

the marginal distribution of T is not Poisson. Cowling (1998) wrongly assumes

this. Her expressions for  and K1 are thus wrong. The

correct K-function for the detected points projected onto the transect line is

(7)

see Appendix A for a proof.

In Figure 1 we show Cowling’s K1-function and the corrected K1-function for three

set of parameter values, for h up to . The relation between  and  is

given by (2), with  in all three sets of parameter values.

Insert Figure 1 about here.
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The empirical K-function is estimated by

(8)

where L is the length of the transect, n is the number of detected points, and

and  are the positions along the transect line. Note that since the theoretical K-

function is developed for an infinitely long transect, there will be a systematic end

effect in the difference between  and . We will not try to correct for

this.

Now, the parameters  and  can be estimated by minimising

(9)

for a suitable value of . The square root transformation was suggested by Dig-

gle (1983) as reasonable when the point process is close to Poisson, but other

transformations could be more effective for more clustered processes.

We further have that

(10)

(see Appendix A for proof), such that  may be estimated by substituting E(n) by

the observed n,and  and  by their estimates.
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We have so far assumed that  is known. However, from (7) we see that

depends on in addition to and . Therefore, it should be possible to estimate

all these parameters from (9). However, in certain situations may be better esti-

mated by other data sources, as described in Schweder et. al. (1999).

3 Simulation study

Cowling (1998) conducted a simulation study to investigate the bias and variance

of the parameter estimates of her method. We have repeated this simulation study

with some small modifications.

For each of 30 different sets of parameter values we carried out simulation exper-

iments numbered from 1 to 30. The parameter values are given in Table 1, except

for , which was 1 in all experiments. For each simulation experiment, the length

L of the transect line was chosen such that the expected number of detected

points was 250, i.e. . Then 250 samples (replications) of obser-

vations were simulated by the following procedure: First, cluster centres were sim-

ulated in a rectangle centred along the transect line, with length L and width 2b,

where the width 2b was very large compared to  and . Then the points were

simulated, but only points inside the rectangle were kept. Finally, the points were

detected randomly according to the detection curve  (1). This procedure has one

disadvantage: Only points belonging to cluster centres within the rectangle will be

simulated. This means that we potentially loose some points belonging to cluster

σ K1 h( )

σ λ ρ

σ

g0

L 250 2πλµσ⁄=

ρ σ
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centres just before the start or after end of the transect line. The procedure above

may differ slightly from that of Cowling (1998), since Cowling does not explain her

procedure in detail.

Insert Table 1 about here.

Only samples with at least 60 detected points were used for estimation. From the

remaining samples the parameters ,  and  were estimated by the method of

Hagen and Schweder (1995) and our corrected K1, whereas  was assumed to

be known. As Cowling (1998), we employed the limit of integration ,

though in practice has to be chosen without knowing the true parameters. The

parameter estimates of each method were found by numerical optimization of (9).

Unfortunately, the results depend on the starting values of the parameters. We

therefore started the optimization from 12 different sets of starting values, and

used the most optimal solution as the final parameter estimates. The 12 starting

values were  combined in all possible ways with

. The corresponding value of  is given by (10) with E(n)

replaced by the observed n. Cowling (1998), on the other hand, used only the true

parameter values as starting values. This could give over-optimistic results if the

criterion function in (9) is unsmooth, and may favour methods that have this unde-

sirable property that the optimization criterion is unsmooth.

Sometimes, the estimates could be very small or very large for one or more of the

methods. Samples with parameter estimates outside the range for at

least one of the methods were excluded from the comparisons between methods.

λ µ ρ

σ

h0 5ρ=

h0

λ 0.001 0.003 0.009 0.027, , ,˙=

ρ 1.0 5.5 10.0, ,= µ

10 20– 1020,( )
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For the method of Hagen and Schweder (1995), one or more samples had param-

eter estimates outside this range in 8 of the 30 simulation experiments, whereas

this happened only in 1 experiment for the corrected K1-function.

The parameter estimates are compared to the nominal parameter values. Note,

however, that since we use only samples with at least 60 observations, and with

parameter estimates within the range , the true parameter values may

in fact differ from the nominal ones. We will however neglect this fact.

Cowling (1998) presented bias and variance for her method, but as a single meas-

ure we prefer to use RMSE = root mean squared error = . For

each simulation experiment we have calculated RMSE for each method and for

each parameter, and compared the two methods through the log ratio

log(RMSEh&s/RMSEcorr). Here “h&s” denotes the method of Hagen and

Schweder (1995) and “corr” the corrected K1-method.  A positive value of this

measure means that the the former method is worse than the latter, and vice

versa. The results are shown in Figure 2Figure 2. The method with the corrected

K1-function is best in almost all situations, except for  and  in experiment

number one.

Insert Figure 2 about here.

10 20– 1020,( )

variance bias2+

µ ρ
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4 Conclusions

We have followed the ideas of Cowling (1998) and corrected her expression for

the one-dimensional K1-function. The simulation study showed that this version

with the corrected K1-function did improve on the former method of Hagen and

Schweder (1995). This was one of the intentions of Cowling’s work.

Cowling (1998) also refers to another estimation method by Brown and Cowling

(1998), and claims that their method is better than the K-function method of Cowl-

ing (1998). However, Brown and Cowling (1998) compare the two methods in 6

simulation experiments with different parameter values. If we calculate

log(RMSEBrown&Cowling/RMSECowling) we get (-1.7, -0.4, 0.2, -0.4, -0.1, -0.2) for ,

(0.6, 0.7, 1.1, -0.3, -0.1, 0.0) for  and (0.4, 0.9, 1.3, 0.0, 0.2, 0.5) for . From

these results, one can not conclude that the method of Brown and Cowling (1998)

is better than Cowling’s K-function method. Though, it should be noted that in the

method of Brown and Cowling (1998),  is estimated as well, whereas it is (prob-

ably) assumed known in the K-function method of Cowling (1998).
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Appendix A Proof of eq.  (7) and  (10)

To prove equation (7) we will need the following results

(11)

(12)

which are easily shown by using that the normal distribution density integrates to

1. Further, if ,

(13)

Assume now first that we only consider clusters with centres at x=c within the

range (-C,C). Then the intensity of the one-dimensional parent process is

.

All c-values within (-C,C) are equally probable, so when we take the expectation

over c, c is treated as uniform with density 1/(2C) between -C and C. We then get

(14)
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and from  (13)

(15)

This gives

(16)

Letting ,  (7) is then obtained from (5), (6), (11) and (12).

To prove  (10), assume again that we only consider clusters within (-C,C). Then

the expected number of detected points on a transect line of length L are

(17)

Letting C go to infinity and solving for  gives (10).
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Table 1 Parameter values and numbering of simulation experiments.

λ µ ρ ω=0.2 ω=0.5 ω=1.0 ω=2.0 ω=3.0

0.02000 12.5 2 1 2 3 4 5

0.00500 50 2 6 7 8 9 10

0.00125 200 2 11 12 13 14 15

0.00500 50 4 16 17 18 19 20

0.00125 200 4 21 22 23 24 25

0.00125 200 8 26 27 28 29 30
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