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1 SUMMARY

A Gaussian random field with a linear trend for the mean is considered. Meth-
ods for obtaining the distribution for trend coefficients given exact and inequality
data are established. Moreover, the conditional distribution for the random field
at any location is calculated. The approach adapts the Data Augmentation Al-
gorithm of Tanner and Wong [5, 6] which is a Monte Carlo technique for finding
the fixed point of an integral operator.

Inequality data has previously been used for mapping random fields using
indicator kriging [4], quadratic programming and splines [2], interval kriging [1],
and Gaussian simulation [3]. However, these authors assume a known mean.

2 NOTATION

We consider a random field Z on R% with a linear trend:
Z(x) =f'(x)8 + €(x); x € R?,

where f'(x) = [fi(x),..., fp(x)] are P known functions, B is P coefficients,
and €(x) is a zero mean Gaussian random field with known covariance func-
tion. The P coefficients are assumed to have a prior multinormal distribution:
13 NNP(/J@;EO)-

Let N exact observations of Z(x) be given: Z¢ = [Z(x5),...,Z(x%)] =
[2(x$),...,2(x%)]. Furthermore, assume that there are M inequality constraints
on Z(x): Z' = [Z(x}),...,Z(x},)]' € [Bi,...,Bu|, where By, ..., By are Borel
subsets of R. The whole set of inequality constraints are denoted B! = B; x - - - X
B, so that Bl is a Borel set in RM and Z! € Bl

In the following several probability density functions (pdf’s) will be consid-
ered. For a general (non-normal) pdf the symbol f(-) is used, for normal densities
¢(-) is used, and truncated normal densities are denoted (). Note that Z(x),
Z¢, 7', and B have a joint multinormal distribution, (p(z(x), z°, 2, ,6), and that
e.g., the conditional distribution gp(z(x)|zi,ze, ,3) is also multinormal. The pdf
?(2(x),7'|z' € B') = p(z(x),2!|B') is truncated normal, where B! will be used
as a short hand for z' € Bl. E.g. the density f(z(x)|z° 3, B') is not normal nor
truncated normal.

Multinormal pdf’s can be handled analytically and efficient simulation meth-
ods are available provided the dimensions are less than, say 500. Truncated nor-
mals are more difficult to handle analytically but simulation is straightforward
using, for example, rejection sampling.



3 OBTAINING POSTERIOR DISTRIBUTIONS

Consider an arbitrary set of K locations, {x1,...,Xg}, and the random field
at these locations organised as a vector: Z = [Z(x1),...,Z(xk)]’. The objective
is to find the posterior distribution of Z given the exact data, Z° = z°, and the
inequality constraints, Z' € B!, denoted f(z\ze,Bi). Given this pdf, predictors
using expectation or the mode can be evaluated and uncertainty measures such as
variance and quantiles can be calculated. In particular 2*(x) = E{Z(x)|z°, B'}
is the natural extension to the standard linear kriging predictor.

Also of interest is to find the posterior distribution of 3 denoted f (,8|ze, Bi)
so it is convenient to consider the joint pdf f(z,3|z°,B') from which marginals
f(B|z°,B') and f(z|z°, B') are obtained.

Following Tanner and Wong [5, 6] the posterior density can be expressed as
the fixed point of an integral equation using basic probabilistic manipulations:

f(z, 8|z, B!) = / / K(z,8;2,8) f(z,8]2z°,B) dzdp (1a)
RP JRK
where the transition kernel is
K(z,5;2,B) = /R _o(2.87,7) 7(22",2,8,B) dz'. (1b)
The fixed point can be computed by iterating
f* (2, Bl2°, BY) = / / K(z,8;7,8) f™ (2 Blz°,B) dzdB.  (2)
RP JRK

Convergence is ensured since the kernel behaves nicely according to criteria given
by Tanner and Wong [5].

Analytical integration of the integrals in the fixed point iterations are not pos-
sible and numerical integration will at best be inaccurate for higher dimensions.
The following algorithm is a Monte Carlo evaluation of the integrals in (2):

Data Augmentation Algorithm.
Given the current approximation f (z,,@|ze, Bi) of f(z,,B|ze, Bi).

(a) Draw S samples, zi(l), ... ,zi(s), from the current approximation to the pre-
dictive density f(z!|z°, B'). This is done in two steps:
(al) Draw @ from f™(B3|z°, BY).
(a2) Draw zi(s) from @(zi|B, z°, B'), where we use B from Step (al). This is
done by drawing from the normal density <p(zi| B, ze) until zi(s) € B
(b) Update the current approximation to f(z, ,3|ze,Bi) to be the mixture of

conditional densities of (z, 3) given the augmented data patterns generated
in Step (a), that is,

S
£ (2, Bl B) = 5 3 (s Bl ), (3)

s=1

where (p(z, B|z¢, zi(s)) are normal densities.



In Step (a) we generate the “latent” inequality constraints given the equality
data by sampling from the density

S (2112, BY) = /R ) /R p(ells, 5,5, B) £ (3, Bla’, B) dadB

The @(zi\ze,i,B,Bi) part comes from (1b) and f™ (i,B\ze,Bi) is found in (2).
Thus, Step (a) essentially performs two of the integrals in the fixed point itera-
tion. However, the z integral is removed from the integral since f™(z!|z°, B) =
Jxr @(zi\ze,,é, Bi) f™ (B|ze, Bi) df. In Step (al) sampling 3 from f@ (B|z¢,BY)
is done by sampling from one randomly selected distribution in the sum in (3); z
is only considered after the final iteration. Step (b) is an evaluation of the kernel
(2) of the fixed point integral: [, ©(z, B|z¢,2') G(2!|z%, Z, B, B') dz!, where the
integral is replaced by the sum over z'’s drawn from f("(z!|z°, B') in Step (a).

The efficiency of the algorithm depends on the rate of rejections in Step (a2).
The rejection rate is large when either f™(z'|z¢,B') is a poor approximation
to f(z!|z¢, B') or when the constraints z' € B! is very restrictive, that is, when
?(2'|z¢, B) is very different from ¢ (z'|z°). The first problem is solved by starting
the algorithm using a small S in the initial iterations and then increasing the
number as f((z'|z°, B) approach f(z'z¢, B'). The second problem must be
handled by implementing smart rejection sampling techniques.

The Data Augmentation Algorithm needs an initial distribution for 3. In the
examples below we have used f(© (,B\ze, Bi) = go(,@|ze) but more sophisticated
choices including some inequality information are possible.

3.1 Posterior distribution for B and Z(x)

If the objective is limited to obtaining moments for the distribution for 3
the Data Augmentation Algorithm simplifies slightly. Step (a) is exactly the
same but in Step (b) any reference to z can be removed so (3) is replaced by
fr0(Blze, BY) = 5351, 0(Bl2°, 7).

To obtain the posterior distribution f(z(x)|z¢, B') the Data Augmentation
Algorithm must be iterated until f™ (z(x), 3|z¢, B') has converged to the nec-
essary precision. Replacing z in (3) by z(x) and simply ignoring the B’s give
fM(z2(x)|z¢,B) = éz;gzl ¢ (z(x)|z°, zi(s)).

4 EXAMPLES

Consider the linear regression model

Z(z) = Bo + bz + €(); z €R,

where €(z) is a Gaussian random field with zero mean, unit variance, and a spher-
ical correlation function with range 4. The prior distribution for the coefficients
is B~ No([3], [182 > ])- The prior variances are two order of magnitudes larger
than the posterior variances obtained below and is almost ‘non informative’.

4.1 Predicting 8

Figure 1 shows regression lines obtained using three exact data and two one
sided inequality constraints. The marginal posterior probability densities for the




Figure 1: Trends using coefficients
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Figure 2: Probability densities. Solid black lines are obtained using a kernel smoother of 8192
samples while dashed lines are normal distributions with identical expectations and variances.
Dotted curves are the posterior normal distributions given only exact data.

intercept, (B, and the slope, (1, are shown in Figure 2. The figures illustrate
that the two inequality constraints alter expectations and reduce the variances.
It is also seen that the conditional distributions for intercept and slope are very
close to being Gaussian. In all examples we have tested using closed or one sided
intervals as constraints the conditional distributions for 3 looks Gaussian. The
next example however gives a highly non-Gaussian result.

The inequality at z = 10 is changed so that Z(10) ¢ [1,3.5]. Figure 3 shows
the corresponding regression lines and data, and Figure 4 shows the marginal
probability distributions for intercept and slope. Now the regression lines pass
through the “illegal” interval and the distribution for the slope becomes bimodal.

4.2  Predicting Z(z)

Figure 5 illustrates the marginal distributions of Z(z)|z°, B' by showing quan-
tiles and expectations as a function of . The statistics are based on 8192 samples
of Z(z). The right hand plot in Figure 5 shows that using E{Z(z)|z®, B'} as the
predictor for Z(z) may lead to poor results since it is in the “illegal” interval at
2 = 10. The median however, passes above this interval. For the example using
one sided constraints the conditional expectation behaves nicely but notice that
the median is slightly above since the distributions are skew.

4.3 Convergence rates

There are two sources of errors in the algorithm: The number of fixed point
iterations are limited and the number of samples, S, of @ and Z(z) in the final
iterations are limited. The examples above where obtained by using S = 2 in the
initial fixed point iteration and then doubling S at each iteration until S = 8192



Figure 3: Trends using coefficients
E{B|ze,Bi} (solid line) and E{ﬂ|ze}
(dashed line). Exact data are plotted as
dots and interval constraints as arrows.
Vertical axis is z.
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Figure 4: Probability densities. Solid black lines are obtained using a kernel smoother of 8192
samples while dashed lines are normal distributions with identical expectations and variances.
Dotted curves are the posterior normal distributions given only exact data.

Figure 5: Quantiles of Z(z)|z®, B! shown as solid lines. Expectation plus/minus standard
error shown as dashed lines.

at iteration 13. From then on S was kept unchanged. Figure 6 shows how the
distributions for the slope evolves as the number of fixed point iterations increase.
The convergence for the first example is rapid and after 10 iterations (S = 1024)
the levels seems to stabilise. Increasing S after this is mainly to reduce Monte
Carlo noise. For the second example however, convergence is very slow. Forty
iterations are shown in the right hand plot of Figure 6 and the levels does not
stabilise until at least 35 fixed point iterations has been run. The problem seems
to be that the number of 3; samples from the highest mode is underestimated
during the initial iterations.

5 DISCUSSION

A method for conditioning a ‘universal kriging’ model on inequality constraints
has been presented. The Data Augmentation Algorithm provides us with an
iterative method to find the posterior distributions in question. We have tried out
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Figure 6: Quantiles and moments for 3;|z°, B! as a function of the number of fixed point
iterations. The horizontal lines are expectation + standard deviation for 3, |z®.

the algorithm for several examples, showing that the posterior trend has an almost
Gaussian posterior density for many natural cases. If we use constraints forcing
the field to be outside a forbidden interval the trend gets bimodal. Moreover,
conditional expectation is no longer a reasonable predictor, since it may violate
the constraints.

Predicting values in a large grid requires approximations. An idea we are
working on is to replace inequality constraints by ‘equivalent’ point data with
error bounds.

Conditional simulation can be performed by letting the Data Augmentation
Algorithm provide samples of 3 and z' and then conditioning the random field
on these.
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