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1. INTRODUCTION

The uncertainty of future returns from a portfolio of financial assets is influenced by the
correlations among the assets. This paper demonstrates the quantitative effect of market
correlations on portfolio management. We look at the optimal allocation and risk in a
portfolio as a function of correlations between the assets. Merton’s problem is chosen
as a toy model to study this, where assets are modelled as multi-dimensional lognormal
processes.

In the paper we consider real and synthetic examples of situations where an investor can
place money in two correlated assets. We demonstrate the functional dependence of optimal
allocation on correlation and compare models taking correlation into account with those
who leave correlation aside. As a measure of portfolio risk, we use the concept of Value-at-
Risk (VaR) from JP Morgan’s RiskMetrics [1]. The importance of taking correlations into
account in risk managemenent is clearly demonstrated in our examples. Estimates for VaR
on the optimal portfolio is calculated for investors with different risk profiles. Finally, as an
application, we calculate the optimal portfolio allocation for a pair of assets traded on Oslo
Stock Exchange and demonstrate the effect of introducing correlations in the model. In the
last section we discuss some extensions towards more realistic models and give references
to relevant papers.

2. MATHEMATICAL MODEL

Let us consider two assets X, and X?, with X} = z; and X? = z5. Let m, € [0,1] be
the fraction of the total wealth invested in asset X}, and 1 — 7; in asset X? and denote
by W[ the total wealth for a given strategy m. We assume that no short-selling of stocks
is allowed in our market. The goal is to find an optimal portfolio allocation strategy
maximizing the expected utility at time 7', i.e.

E*U(WE )] = Sup EY[U(Wr)],

where U(z) = %,0 < 7 < 1is a HARA-utility function!, and ¢ < T. This is known
as the Merton problem. We will study this problem when the two assets are geometrical

Date: Preliminary version January 10, 2000.
Ly, or rather 1 — =, is the investor’s aversion towards risk.
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Brownian motions on the form
dX} = X (ju dt + 01 dBY)
dX{ = XP(p2 dt + poa dBy + /(1 — p?)or dBY),
where B} and B? are independent Brownian motions. We have the statistical properties
E[X]]=e""; i€ {1,2}
Std[log X/] = o;v/t ; i€ {1,2}
Corr[log X}, log X?] = p
The wealth process has the dynamics
AWy = W (2 + me(pn — pe2)) dt
+ W/ (poz + mi(01 — pos)) dB} + Wi (1 — m)\/1 — pPoy dB;,
where Wy = w. The optimal portfolio strategy can be computed explicitly by (see Appen-
dix)
1 if7a>1
m=q7 if0<7<1
0 ifr<0
where

M1 — M2
L=

7= (0} — 2po10y + 02)7! < + 05 — ,00'10'2) :

When o, = 0 we obtain the classical solution # = (u; — u2)/((1 — y)o?) to the Merton
problem with one bank account and one risky asset.

The Value-at-Risk with risk level p for a positive process X at time ¢ is defined to be
VaR{(X) = E[ln X;] — g,(?),
where g, (t) is the p-quantile of In X;. Since W/ is a geometric Brownian motion we get
VaRE(W™) = —,0° Vi,

where ¢, is the p-quantile for a standard normal variable and

ot = \/(pag + (01 — ,002))2 + (1 —7*)202(1 — p?).

The crucial factor in VaR for the optimal portfolio is its standard deviation. In most of
our illustrations we shall focus on this rather than the VaR itself.
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3. DEPENDENCY ON PARAMETERS IN THE OPTIMAL PORTFOLIO ALLOCATION
STRATEGY

In this section we investigate the dependency of the optimal portfolio strategy on various
parameters, with emphasis on the correlation and risk aversion sensitivities.

First consider the optimal allocation as a function of the correlation between the two stocks.
A straightforward differentiation shows that
o o5 — ol + 252
5. — 0102 -
dp

We see that 7 is increasing with p when 03 — o2 > 2(ug — p1)/(1 —7), while it is decreasing
when 03 — 0? < 2(ug — p1)/(1 — 7). Note that 7 is a constant independent of p when
o5 — 0% = 2(pug — p1)/(1 — 7). In that case 7 = 0.5. Hence, when the volatility and the
expected rate of return in the two stocks balance in a certain way we divide our wealth

exactly in two equal parts, no matter how the stocks are correlated.

(02 — 2poi09 + 02)%°

Next we look at 7 as a function of the risk aversion coefficient. Computing the partial
derivative of ™ with respect to 7, we find

6_7? M1 — M2

0y (1 —7)%(of — 2po102 + 03)
From this expression it is easily seen that 7 is an increasing of ~ if p; > uy. Moreover, the
oF

partial derivative 5, is increasing with v and becomes infinite for v = 1.

We consider some concrete examples which illustrate quantitativly the dependency on dif-
ferent parameters in the optimal portfolio allocation strategy. We have chosen parameters
which are relevant to real market data. In the examples we focus on the variation of 7} as
a function of the correlation, the volatility and the risk aversion.

EXAMPLE 1:

In the first example we have chosen p; = 5% and py = 10% annually,? and let o; = 0.02
and v = 0.5. With these parameters 7} (p) has been plotted in Figure 1. The different
curves correspond to various values of o,. We notice from the figure that 7} (p) for p > 0
changes rapidly with oo when o5 is in the range (0.02,0.04). For values of o, above this
range, 7;(p) becomes less and less sensitive to changes in oy as the curves are getting
denser and denser with increasing values of g,. In this example, 7; is independent of p and
equal to 0.5 for oy = 0.03464. When o5 > 0.03464, 7;(p) > 0.5 and increasing with p as
long as m; < 1. When oy < 0.03464, 7} (p) < 0.5 and decreasing with p as long as 7} > 0.
We also notice that 77 (p) changes rapidly with p for p > 0 and values of o5 in the vicinity
of o0y = 0.03464. Thus, when o, = 0.04 we find that 7; = 0.60 for p = 0 and 7; = 1 for
p = 1. Similarly, when oy = 0.03 we find that 7; = 0.38 for p = 0 and 7} = 0 for p = 1.
Finally, there exists a lower value for o, below which 7} equals 0 for all values of p € [0, 1].
In this example this lower value of o5 is g9 = 0.01236.

2We have assumed 250 trading days in these examples



4 BENTH, GJERDE, AND SANNAN

" (p)
1

0.10

0.040
0.035
0.030

0.025

0.020

/
=—
T o4
\

0.2

0.015

FIGURE 1. 7} (p) for p; = 5% and py = 10% annually, and fixed o7 = 0.02
and v = 0.5. The family of curves corresponds to different o9’s with the
values of 04 indicated to the left.
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Ficure 2. Std(log Wr(p)) for uy = 5% and ps = 10% annually, and fixed
o1 = 0.02 and v = 0.5. The family of curves corresponds to different oy’s
with the values of 05 indicated to the right.

In Figure 2 we have plotted the standard deviation of the logarithm of the wealth Wy as
a function of p for the given values of 1, ps2, 01, and . The family of curves corresponds
to various values of 09, as indicated in the figure. We notice from the curves that the
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uncertainty of the wealth process, represented by the function Std(log Wiy (p)), in general
increases with the correlation p. However, there are a couple of special features of the
plot in Figure 2 that we would like to comment on. Firstly, the curves corresponding to
the values o9 = 0.015,0.020,0.025, and 0.030 are constant for certain values of p. This
corresponds exactly to those values of p for which 7} is truncated to zero, as seen from
Figure 1. Secondly, the curves corresponding to the values o, = 0.035,0.040, etc. have a
maximum for some positive p < 1. Hence, for certain given values of w1, us, 01,09, and
v, the uncertainty of the wealth may actually decrease with increasing values of p. The
maxima of these curves move closer and closer to p = 0 for higher and higher gs-values,
until the curves become truncated to a constant for all positive values of p. This truncation
of the curves corresponds to the truncation m; = 1 for positive p’s and high values of o5.

EXAMPLE 2:

In the second example we have taken p; = 10% and po = 5% annually, with fixed oy = 0.05
and vy = 0.5. In Figure 3 we have plotted 7} (p) with these parameters and various values
for oy. In this case 7} (p) is particularly sensitive to changes in oo when p > 0.8 and oy
is in the range (0.03,0.05). As in the first example, 7} (p) becomes less and less sensitive
to changes in o, for larger values of o,. =} is independent of p and equal to 0.5 for
oy = 0.04123. When oy > 0.04123, 7;(p) > 0.5 and an increasing function of p as long as
7 < 1. Similarly, when o9 < 0.04123, 7/ (p) < 0.5 and an decreasing function of p as long
as m; > 0. In this example 7} (p) is particularly changing rapidly with p for p > 0.8 and
values of oy in the vicinity of oy = 0.04123. Thus, when o9 = 0.045 we find that 7; = 0.54
for p = 0 and 7} =1 for p = 1. Similarly, when oy = 0.04 we find that 7; = 0.49 for p =0
and m; = 0 for p = 1. In the special case o9 = 0 we retrieve the classical solution to the
Merton problem with 7/ being a constant independent of p, i.e., m; = 0.16. A peculiar
feature of the graph is that 7} decreases below the value 0.16 for small values of oy when
p is large and positive. For p > 0.8, 7; dips down to zero before it increases again for even
larger values of o5.

In Figure 4 we have plotted Std(log Wr(p)) for the given values of 1, us2, o1, and . The
different curves again correspond to various values of 05. As in Example 1 we notice that
the function Std(log Wr(p)) generally increases with the correlation p. The constant pieces
of the curves corresponding to o, = 0.015,0.020, 0.025, 0.030, and 0.035 correspond to the
values of p for which 7 is truncated to zero, as seen from Figure 3. We also notice that
all curves with a og-value less than the critical value 0.04123, for which 7; = 0.5, have a
maximum for some positive p < 1. The maxima of these curves move closer and closer to
p = 1 as oy is approaching the value 0.04123. The curves corresponding to oo > 0.04123
do not exhibit such a maximum for p < 1. Instead these curves are truncated to a constant
above a certain value of p, corresponding to the truncation 7; = 1 for the same values of

p-
In this example we have also made a couple of 3D-plots of the function 7} (p,y). With the

given values of pq, 2 and o, we have plotted 7} (p,v) for oo = 0.06 in Figure 5 and for
o9 = 0.04 in Figure 6. We notice from these figures that 7;(p,y) is an increasing function
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FIGURE 3. 7} (p) for uy = 10% and po = 5% annually, and fixed o1 = 0.05
and v = 0.5. The family of curves corresponds to different o9’s with the
values of 04 indicated to the left.
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FicUure 4. Std(log Wr(p)) for uy = 10% and py = 5% annually, and fixed
o1 = 0.05 and v = 0.5. The family of curves corresponds to different oy’s
with the values of 05 indicated to the right.

of v for fixed p in the regions where 7} (p,y) < 1. By comparing Figure 5 and Figure 6 we
also notice that 7 (p, ) is very sensitive to changes in o, in the range (0.04,0.06) in the
region where p is large and positive and 7y is smaller than 0.6-0.7 roughly.
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FIGURE 5. 7} (p,7) for p1 = 10% and ps = 5% annually, and o; = 0.05 and
09 = 0.06.
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FIGURE 6. 7} (p,) for 3 = 10% and py = 5% annually, and o; = 0.05 and
09 = 0.04.
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4. APPLICATION ON A PORTFOLIO FROM THE OSLO STOCK EXCHANGE

We consider a portfolio consiting of shares from the Agresso Gorup (AGR) and Berge-
sen d.y. (BEA) quoted on Oslo Stock Exchange. Over a period of 506 trading days
starting January 1, 1997, we fitted the closing prices to the two dimensional geometric
Brownian motion model. The parameters were estimated by maximum likelihood, giving
= —11.27%, o1 = 0.0160 for AGR and py, = —12.57%, o9 = 0.0101 for BEA. The
correlation was estimated to be p = 0.17.

In Figure 7 we have plotted 7} (y) for the assets of AGR and BEA. Also shown in Figure 7
is the graph for 7/ () in the case the two assets had been totally uncorrelated (p = 0). We
notice from the plot that the uncorrelated graph is higher than the correlated one for values
of v smaller than 0.325. For 7 in the range (0.325,0.797) the uncorrelated graph is lower
than the correlated one. For v > 0.797 both graphs are truncated such that 7;(y) = 1
in either case. Hence, for values of v higher than 0.797 there is no difference between the
correlated and the uncorrelated case. However, if v = 0 we find that 7} = 41.75% in the
correlated case and 7} = 43.02% in the uncorrelated case, i.e., the correlated value is 1.27%
lower than the uncorrelated one. If v = 0.75 we get an opposite result. In this case we
find that 7; = 93.23% in the correlated case and 7} = 86.59% in the uncorrelated case,
i.e., the correlated value is 6.64% higher than the uncorrelated one.

")

0.2 0.4 0.6 0.8 1

FIGURE 7. 7} (7) for py = —11.27% annually and oy = 0.0160 (AGR), and
pe = —12.57% annually and o9 = 0.0101 (BEA). The correlation between
AGR and BEA is p = 0.17. The dashed curve shows the values of 7} in the
case the assets had been uncorrelated.
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5. DISCUSSION OF EXTENSIONS TOWARDS MORE REALISTIC MODELS

Realistic portfolio optimization models must take market frictions like liquidity and trans-
actions costs into account. Also, statistical stylized facts of the stock prices which is not
captured by the geometrical Brownian motion must be included in the modeling.

As we have seen, the Merton problem considered in this paper gives an optimal allocation
strategy continuously transferring money between the two shares. This is highly unrealistic,
of course, since market frictions will make such a strategy infinitely expensive. However,
as Rogers [18] demonstrates, an investor performing only a finite amount of transactions
will make it nearly as good as the Merton investor. Mertons problem can be generalized
to treat transaction costs as well. We would like to mention among other papers Akian,
Menaldi and Sulem [2] who consider multi-dimensional geometric Brownian motion market
with proportional transaction costs, and Bielecki and Pliska [7] who treat both fixed and
proportional fees for reallocating wealth. Note that in these papers more general functionals
measuring the investor’s utility are considered.

It is a well-known fact that logreturn data usually do not show a normal behaviour. This
again implies that geometrical Brownian motion is not a good model for stock prices.
Eberlein and Keller [11], Rydberg [18] and Prause [16] have used the generalized hyperbolic
distribution in empirical studies of financial time series data. Logreturn data often have
semi-heavy tails and are skew, among other stylized facts. This class of distributions seems
to capture these features of logreturn data very well (see also Barndorff-Nielsen [9, 10]).
Substituting the normal distribution with a generalized hyperbolic distribution leads to a
stock price dynamics with Lévy process driven noise. Bank and Riedel [8], Benth, Karlsen
and Reikvam [3, 4], Framstad, @Oksendal and Sulem [12] and Kallsen [13] have studied the
Merton problem with a risky asset driven by a Lévy process. Furthermore, in [5, 6] fixed
and proportional transaction costs are included in the market model.

In Rydberg [18] and Prause [16] one finds multivariate generalized hyperbolic models for
several correlated stocks. It is mathematically interesting and, in our opinion, of practical
importance to find the portfolio allocation strategy for such multivariate models and study
sensitivities with respect to different parameters such as the correlation and the risk aver-
sion, etc. in order to find the critical factors. Our studies above indicate that correlation
will play an important role for the allocation strategy.

APPENDIX

Theorem 5.1. Let X/ and X? be two assets, modelled as geometric Brownian motions,
dX;} = X/ (w1 dt + 011 dB; + 012 dB})
dX}? = X}(uo dt + 021 dB} + 099 dB})

with parameters {p;};—, and {oi;};,—,. Let m € [0,1] be the fraction of the total wealth
invested in asset X}, and 1 — m; in asset X?. Denote the total wealth at time t, as a
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function of my, by W[. Then

1 ifn>1
=47 f0<7<1
0 ifn<0
where
M1 — 2 091 (011 — 091) + 022(012 — 092)

= (1 =7)((611 — 021)2 + (012 — 022)?) B (011 — 091)% + (012 — 022)?)

solves the optimal control problem
B U(WE )] = sup E*[U(Wi))]
Tt

where U(x) = %,0 < v < 1 is the HARA-utility function, X§ = z1, X§ = 9, Wy = w
andt <T.

Proof:
The wealth process is given by
AW = W (po + m(pn — po) dt
+ (091 + T (011 — 091)) dB} + (093 + 7 (012 — 029)) dB?)
and has infinitesimal generator A™ given by (on a function f)
of

0
.Aﬂ’f(t, 33) = —f + (/,LQ + 7Tt(,u1 — Mz))l‘%

ot

1 2 2y 20°f
+ 5{(021 + m(o11 — 091))° + (092 + (012 — 022)) " }o 2
The HJB-equation for a Markov control is

sup{A"®(t,z)} =0 @(T,z) =U(z), ®(t,0)=U(0) t<T

Assume a solution of the form ®(¢,z) = g(¢)z". Inserting this expression into the HJB-
equation, in connection with theorem 11.2 in [15], proves the theorem. O
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