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Abstract

In the Norwegian minke whale surveys, the position of an observed whale relative
to the vessel is given by the radial distance and the angle from the transect line. In
the present paper, the bias and the variability in the observed radial distances and
angles is estimated from buoy sighting experiments. The variability of observed
angles is further modified by using data for duplicate observations in real sight-
ings.

1 Introduction

To obtain abundance estimates of minke whales in the northeastern Atlantic, sur-
veys have been conducted in each year in the period 1996-2001 (Skaug et. al.
2002). As a part of the analysis, there is a need to quantify the bias and variability
in the relative positions of sighted surfacing. The present paper presents meas-
urement error models for the relative positions, based on a parallel set of buoy
experiments in the years 1996-2001, and on duplicate observations from the real
sightings in the same period. The paper updates the results of Schweder (1997),
based on new buoy data and modified models.

In a real survey, the position of a surfacing whale is recorded by an observer as
the estimated radial distance from the observer to the spot of water where the
whale was seen and the angle between the sighting line and the transect line.




This situation is imitated in buoy sighting experiments where observed radial dis-
tances and angles to buoys are estimated from the platform, and at same time
measured by radar.

From the buoy data we have estimated a model for the observed radial distance
as a function of the true radial distance, where both the bias and the variability
depends on the true distance. Similarly, we have modelled the observed angle as
a function of the true angle, where the bias and the variability depends on the true
angle. The variability of observed angles is further modified by using data for
duplicate observations in real sightings. These models are slightly more complex
than those suggested by Schweder (1997).

2 Data

The buoy sighting experiments were conducted the following way: Two buoys with
radar reflectors are dropped into the sea at a distance 1000-2000 meters from the
vessel, one on the port and the other on the starboard side. The vessel moves
towards the buoys at cruising speeds (about 10 knots). The vessels have two
independent observers located at platforms A and B respectively. At a signal, they
are asked to estimate the position of one of the two buoys, given as the radial dis-
tance and the angle from the vessel direction. The radial distance is estimated by
eye, whereas the angle is measured by an angle board. At the same time the true
radial distance and angle are measured by radar and recorded. This procedure is
repeated when the vessel moves towards the buoys, but with a random switching
between the buoys. Since several recordings are made within each new drop of
buoys, the data will be positively serially correlated. This type of experiments were
called experiment type B in Schweder (1997).

Such experiments were conducted each years in the period 1996-2001, for six dif-
ferent vessels, and for various observers.

We will let R and r denote the observed and true radial distances, respectively,
measured in metres. Furthermore, © and 8 denotes the observed and true angles,
measured in degrees, respectively. Angles on starboard are positive, and angles
on port are negative.

A few times, the observer have obviously looked at the wrong buoy. Such observa-
tions are deleted. One example is when the true angle is 31 degrees, one
observer has recorded 34 degrees, but the other has recorded -34 degrees. One
observation with abs(0) > 90 degrees is deleted as well. Furthermore, for each
platform we use only the observations where all four corresponding measure-
ments of R, r, ©, and 6 were recorded.




The resulting data set consists of 1988 observations with corresponding values of
R, r, ©, and 0. This data set is used for the estimation of the models for the radial
distances and the angles. For most of these observations, the buoy were
observed from both platforms. When these are grouped in pairs, we have 820
observations with observed radial distances (R ,, Rg) and angles (©,, ©p),
where the subscripts denotes platform A or B.

In addition to the data from the buoy experiments, we have 109 pairs of duplicate
observations from the real sightings in the 1996-2001 surveys. These data are
discussed in Section 6.

3 The radial distance model

A reasonable starting point is to assume that R/ris log normally distributed, or
equivalent, that log(R)-log(r) is normally distributed. This is confirmed by Figure 1,
which shows log(R) and log(R)-log(r) versus log(r).
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Figure 1 Plot of log(R)-log(r) versus log(r).

We estimate the model

log(R) = Bo+Bilog(r)y+e ,  €ON(0, 0% , (1)

by maximum likelihood. From Figure 1 we will expect that 3, is close to O and that
B, is close to 1. The estimates and their standard errors (for the 3's only) are
shown in the “estimate 1” column of Table 1. The standard errors in Table 1




ignores the positive serial correlation in the data, and are biased downwards.
From a simple bootstrap exercise, Schweder (1997) found that the true standard
deviations of the parameter estimators could be four times as high as the nominal
standard errors. With this in mind, (3, is clearly not significant different from 1. We
therefore also fit a model with B: fixed to 1 (the “estimate 2” column of Table 1.

Table 1 Estimates of model (1), with nominal standard errors from standard linear
regression in parenthesis. Estimate 1: Both parameters estimated. Estimate 2: B;
setto 1.

parameter | estimate 1 | estimate 2
Bo -0.191 -0.110
(0.085) (0.009)
B, 1.013 1.000
(0.013)
o 0.388 0.388

We have also estimated a general additive model (Hastie and Tibshirani, 1990)

where the linear term in (1) has been replaced by a spline function with approxi-
mately four degrees of freedom. This analysis gave no evidence for a non-linear
relationship between log(R) and log(r).

The error in log(R) may potentially depend on 6 as well. If so, the dependency has
to be of abs(0), i.e. symmetric around the transect line. When adding a spline
function of abs(8) with four degrees of freedom to model (1), log(R) seems to be
slightly linearly dependent on abs(8). Therefore, abs(0) is added linearly to model
(1). The regression coefficient is estimated to 0.0016, with a standard error of
0.0005. Having the downward bias of the standard error in mind, the angle effect
is hardly significant. Anyway, the resulting estimate of o is only 0.001 less than in
model (1). From this, no angle effect is included in the model for radial distance.

We now study the residuals &€ = log(R) — (fo + B1log(r)) from model (1). The left
panel of Figure 2 shows the residuals versus log(r). The standard deviation o is
seen to decrease for increasing value of log(r). To investigate this further, we
assume for the moment that

g’ DGamma(oZ(r), Q , @

where oz(r) = E(éz) is the expectation in the Gamma distribution and  is the
shape parameter. Further, we assume the following structure




log(a”(r)) = 2log(a(r)) = s(log(r)) |, @

where s is a spline function with four degrees of freedom. We fit this model by the
framework of generalized additive models. The estimated spline function (centred
around 0) with corresponding 95% confidence interval are shown in the right
panel of Figure 2. The plot clearly indicates a linear relationship. The non-lineari-
ties in the ends are not significant.
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Figure 2 Left panel: Residuals from model (1) vergus log(n).

Right panel: The spline function estimate of log(o™(r)) versus log(r), with 95%
confidence limits (ignoring serial correlation). The black tick marks at the bottom
show the distribution of log(r).

The above analysis leads to the model

log(R) = Bo+Bilog(r) +&(r) ,

e(r) ON(O, o°(r)) , "

1
5109(a”(n) = log(a(r)) = o+ alog(r)
The four parameters are simultaneously estimated by maximum likelihood (Table

2). The estimate of (3, is very close to 1, and we refit the model with 3; fixed to 1
(Table 2).




'Ip')able 2 Estimates of model (4). Estimate 1: All parameters estimated. Estimate 2:
1 setto 1.

parameter | estimate 1 | estimate 2
Bo -0.120 -0.108
B, 1.002 1.000
O, 0.539 0.542
o, -0.237 -0.237

Finally, we want to check the normality assumption of model (4). We calculate
standardized residuals from the last model (with 1 = 1) as

[log(R) - (Bo + log(r))]/8(r), which should have standard deviation around 1.
Figure 3 shows that the standardized residuals have a slightly skewness to the
left, but we find this acceptable. We therefore conclude that the model (4) is a sat-
isfactory model for the radial distance, with parameters given in the right most col-
umn of Table 2.

0.4

0.3

density

quantiles of standardized residuals
0.2

0.1

0.0

T T T T T T T T T
-2 0 2 -6 -4 -2 0 2 4

quantiles of standard normal distribution standardized residuals

Figure 3 Left panel: Normal score plot for standardized residuals from model (4).
Right panel: Smoothed density plot of the standardized residuals.

Inserting the parameter estimates into model (4), and transforming back to the
original scale, gives our proposed measurement error model for the radial dis-
tances, based on the buoy data:




R = exp(-0.108 [r Cexp(e(r)) = 0.898LF [(exp(e(r)) ,
e(r) ON(0, 0°(r)) ®
o(r) = exp(0.542— 0.23Tog(r)) = 1.710°°%" .

The standard deviation and bias of this model is shown in Table 3.

Table 3 Standard deviation and bias of model (5).

r 100 500 1000 2000

o(r) | 058 | 039 | 033] 028
E(R/r)| 1.06 | 097 | 095| 0.93

4 The angle model

Figure 4 shows © and the difference ©-0 plotted against 6. (The white stripes that
can be seen in the right panel are only due to © and 68 being recorded in whole
degrees). If © were an unbiased measure of 8, ©-0 should vary around O for all
values of 6. However, there seems to be an increasing linear relationship: when
the buoy is on the starboard side (0 is positive), the observer’s estimate © tends to
be too large, i.e. too far to starboard, and vice versa when the buoy is on the port
side. When the buoy is close to the vessel direction (6 = 0), there seems to be no
bias, which is reasonable.
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Figure 4 Plot of © and ©-6 versus 6.




We therefore start by fitting the model

O = BO+e , e ON(0, 0% . ©

again using ordinary least squares. The model contains no constant term,
because when 6=0, E(®) should obviously be 0. The estimates are shown in
Table 4. We conclude that B is significant different from 1, even if we take into
account that the estimated standard error is biased downwards by a factor of 4, cf.
the corresponding analysis of radial distances. The estimated value of o is 5.41,
which can be compared to the standard deviation of ®-6, which is 5.72. Thus,
even if the bias is clear, it is relatively small compared to the additional random
error.

Table 4 Estimates of model (6) with standard error disregarding serial correlation.

parameter estimate

B 1.054
(0.004)
o 5.41

In model (6), we ignored the potential dependency on the true distance r. One
explanation for the patterns in Figure 4 may be the movement of the vessel. When
the observer gets the signal to observe the buoy (or in a real sighting; when the
observer sees the whale), it will take some time to measure the angle. Since the
vessel moves forwards, the measured angles will tend to be too far out to each of
the sides due to the delay in the angle measurement. To investigate this further,
we calculated the angle velocity x = d6/dl, i.e. the alteration d6 in angle when
the boat moves a short distance d/, which depends on both 8 and r, and fitted the
model ® = 08+ Bx +¢. This model gave a worse fit than model (6). We also fitted
a linear model with 6, log(r) and the cross product 6 [log(r) as explanatory varia-
bles. Even if this model improved slightly on model (6), with 6 = 5.34, we have
chosen to keep model (6) because of it's simplicity.

The left panel in Figure 5 shows the residuals ¢ = © — {36 from model (6). There
is a tendency that the variance increases when abs(6) increases from 0. In anal-
ogy to the analysis of model (1), we assume for the moment that the residuals fol-




lows a model like that specified by (2) and (3), except that o depends on 8 instead
of r. The estimated spline function is shown in the right panel of Figure 5. The log-
arithm of ¢° seem to increase linearly when abs(6) increase from 0 degrees to
around 55 degrees. The estimated spline function decreases when 6 increase fur-
ther, but this is insignificant (again taking into account that the uncertainty is
underestimated).
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Figure 5 Left panel: Residuals from model (6) versus 6.
Right panel: The spline function s(abs(8)) versus abs(8), with 95% confidence

limits.

We therefore specify the following model where the logarithm of o increase line-
arly by 6 up to 55 degrees, and remains constant for higher values of 6:

© = p6+¢e(6) ,

£(8) ON(0, 6*(8)) o

%Iog(cz(e)) = log(o(B)) = ay+a;min(abs(0), 55)

The three parameters are estimated simultaneously by maximum likelihood, and
shown in the “estimate normal” column of Table 5.




Table 5 Estimates of the model (7). Estimate normal: Assuming normal
distribution. Estimate t: Assuming t distribution.

estimate estimate
parameter
normal t

B 1.057 1.045
Og 1.336 1.312
o, 0.0117 0.00918
Y, - 5
Op - 1.057

To check the normality assumption of model (7), we calculate the standardized
residuals as (© — ﬁe)/é(e) . Figure 6 shows that the standardized residuals are
symmetric, but with heavy tails.
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Figure 6 Left panel: Normal score plot for standardized residuals from model (7).
Right panel: A smoothed density plot of the standardized residuals.

We therefore alter the normality assumption in (7) to
€(0) = s(0) 1, |,

where t, is t distributed with v degrees of freedom, and s(0) is defined such that
the last line in (7) is still valid. We assume that v = 3, because this is necessary




for the variance of t, to exist, which then is Var(t,) = v/(v—-2). Since
a’(8) = Var(g(0)) = s*(8) var(t,) = s*(8) /(v -2), s(8) is given by

:—ZLIog(sz(e)) = log(s(8)) = ay+a;min(abs(0),55) ,
©
o = ao—%log(v/(v—Z))

The parameters, including v, are first estimated simultaneously by maximum likeli-
hood, giving oM" = 3. However, a plot of the quantiles of the standardized residu-
als from this model versus the quantiles of a t3 distribution indicates that the t3
distribution has too heavy tales. Also a t, distribution has too heavy tales, whereas
a tg distribution seems to be suitable. We therefore fix v to 5, and estimates the
other parameters by maximum likelihood (shown in the “estimate t” column of
Table 5). The left panel of Figure 7 shows the quantiles of the standardized resid-
uals versus the quantiles of a t distribution with 5 degrees of freedom. These plots
confirms that the t distribution fits well. We therefore conclude that the model (7)
modified by (8) and (9) is a reasonable good model.
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Figure 7 Left panel: Quantiles of standardized residuals from model (7)- (9)
versus quantiles from a tg distribution. Right panel: A smoothed density plot of the
standardized residuals.

To summarise, we propose the following measurement error model for the angles,
based on the buoy data:

11



© = 1.045[B +¢(0)
€(6) = s(8) x5 , where tgis t distributed wth 5 degrees of freedom,
s(0) = exp(1.057+ 0.00918min(abs(0), 55))
= 2.88[kxp(0.00918min(abs(8), 55))

(10)

If one want a model with Gaussian errors, one may alternatively use

O =1.057B+¢ |,

£(8) ON(0, 6°(8))
exp(1.336+ 0.0117Mmin(abs(0), 55))
3.80kexp(0.0117Mmin(abs(8), 55))

(11

()

The standard deviations of the models (10) and (11) are shown in Table 6.

Table 6 Standard deviations models (10) and (11).

S 0 15 30 45 55
a(0) of model (10) 3.7 4.2 4.9 5.6 6.2
o(8) of model (11) 3.8 4.5 54 6.4 7.2

5 Dependency among observations from the two platforms

So far, we have made models for the observed radial distances and angles from
one platform, without considering possibly dependencies among the pairwise
observations from the two platforms on the same buoy.

Let R, and Rz be observed radial distances from platform A and B, respectively,
on the same whale, and let €,(r) and €5(r) denote the corresponding errors from
model (4). Assume that the errors can be decomposed into one component sepa-
rate for each platform and one component common for both platforms, i.e.

€a(r) = va(r) +w(r) ! eg(r) = vg(r)+o(r) , 12)

with Var(v,(r)) = Var(vg(r)) = y*(r) and Var(w(r)) = ¢°(r), and thus
a’(r) = Y(r) +6*(r).

Ignoring the dependency of r for a while, Var(log(R,) —10g(Rg)) = 2y2 is a
measure of the random variation between two platforms observing the same

12



whale. We have estimated y from the 820 pairs of (R,, Rg) in the present buoy
data, which gave ¥, = 0.311. (The subscript b denotes estimates based on buoy
data, to distinguish them from estimates based on real sightings data, which will
be discussed in the next section). Note that this estimate is an overall estimate for
the whole data set, averaged over all true distances. This can be compared to the
estimate of o from model (1), which estimates the standard deviation of €(r),
averaged over all distances rin the buoy data. The estimate of o is §, = 0.388
(see Table 1). Thus, the random variation between two observers observing the
same whale constitutes only 64% (0.3112/0.3882) of the total variance. The
remaining variance (¢2) may for instance be due to variation in the weather condi-
tions. If we assume that yz(r) and ¢2(r) are proportional to oz(r) for all r, i.e.
y2(r) = ¢* [bz(r) and ¢2(r) = (1—02) Ebz(r) , we then get the estimate

¢ = 9,/6, = 0.80, which yields y*(r) = 0.640b°(r) and $(r) = 0.366%(r).

We then do a corresponding analysis for the variability in the angles. Let ©, and
Op be the two observed angles on the same whale, and assume that the error
€(0) in (7) or (8) can be decomposed as in (12), but with rreplaced by 6. We
have computed the estimate of Var(©,—0g) = 2y2 from the 820 pairs of

(©,4, ©p) in the buoy data (ignoring the dependency of 6). This gave y, = 4.05,
which is much lower than the corresponding estimate of o from model (6), which is
5.41 (Table 4). Thus only about 56% of the variance of the measurement error is
related to random variation between the two platforms. the corresponding esti-
mate of cis ¢ = §,/6, = 0.75, which yields y2(r) = 0.56[bz(r) and

0%(r) = 0.4406°(r).

6 Re-estimating variability from sightings data

The buoy experiments have been designed as close to the real sighting situations
as possible, but there will of cause be some difference. One may therefore argue
that one should use sightings data to estimate the bias and variability in estimates
of the radial distance, if possible. Concerning the bias, this is obviously not possi-
ble. However, Schweder (1997) suggested estimating the variability from the
sightings data.

We first consider the radial distances. We have estimated y from 109 duplicates
from the 1996-2001 sightings data, which gave ¥, = 0.334. This value can be
compared to the corresponding value from the buoy data given in Section 5,

¥, = 0.311. (The subscripts s and b denote buoy and sightings data, respec-
tively). The slightly higher value of §, compared to ¥, can be explained by the

13



mean radial distance being slightly less in the sightings data, i.e. we can expect
higher mean variance in the sightings data. We conclude that the estimated val-
ues of y from the two data sets are in accordance with each other, and we there-
fore suggest using the buoy data to estimate both the bias and the variability in
observed radial distances.

Next, we consider the angles. We have estimated y from the 109 duplicates in real
sightings in the 1996-2001 surveys, which gave y, = 8.13. This is double the cor-
responding estimate from the buoy data given in Section 5, ¥, = 4.05, which
strongly indicates that the observation process is different in the buoy experiments
than in the real sightings. However, a plot (not shown) of the quantiles of ©,— 04
from the buoy data versus those from the survey data shows a linear relationship,
indicating that the distributions have the same shape, but different variance.

We therefore suggest that the structural forms of the variances of €(0) in (7) and
(8) are kept, but that the levels are modified according to the real sightings data.
First, we must take into account that the mean observed (absolute) angle in the
buoy data is 30 degrees, whereas it is 45 degrees in the real sightings data. Using
the t-distribution model, Table 6 shows that o(0) increases from 5.4 to 6.4 when
0 increases from 30 to 45 degrees. If we, as in Section 5, assume that yz(e) and
¢2(e) are proportional to 02(6) , then y(8) will also increase by a factor 6.4/5.4
when 0 increases from 30 to 45 degrees. Therefore, the factor

Vs/((6.4/ 5.4 §,) = 1.69 s a fair estimate of how much higher y(8) is in the real
sightings compared to the buoy experiments. We assume that this factor holds for
all values 6 and for ¢(8) as well, and thus also for o(0).

7 Proposed models relevant for real sightings

Finally, we present our proposed models, that we find relevant to model observa-
tional errors in the real sightings. According to the discussion in Section 5, the
errors are divided into one component different for each platform, and another
component common to both platforms. Furthermore, the variance of the angle
model is adjusted, so it is in accordance with the estimated value of y2 from the
real sightings data.

The model for the radial distances observed from platform A is

14



R, = exp(—0.108 [r Cexp(g4(r)) = 0.898LF [exp(es(r))
€a(r) = va(r) +w(r) ,
vA(r) ON(O, 0.646%(r)) , 13
w(r) ON(O, O.36Ebz(r)) , Independent of v ,(r)
o(r) = exp(0.542— 0.23%og(r)) = 1.7107°%" .

The model for platform B is similar, with a separate error component €5(r), but a
common error component w(r).

The model for the angles observed from platform A, with Gaussian errors, is

O, = 1.057[B +¢g4(0)
€a(r) = va(r)+w(r) ,
v,,(r) ON(O, 0.56[1°(r))
w(r) ON(O, O.44Ebz(r)) , Independent of v ,(r)

o(0) = 1.69kexp(1.336+ 0.0117min(abs(8), 55))
= 6.42[kxp( 0.0117Min(abs(0), 55))

(14)

Again, the model for platform B is similar, with a separate error component €5(r),
but a common error component w(r).

15
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