
Guidelines to Formal System Studies

by J.-R. Abrial

November 2000

Draft Version 2

Guidelines to Formal System Studies

J.-R. Abrial

Consultant

While the problematics of the development process for software system has now acquired
a certainly stability in form, the same thing cannot be said about \System Studies". This
document is intended to present a, so-called, formal approach to such studies and to elabo-
rate a number of guidelines aimed at putting it into practice1.

It is made of three parts. In the �rst one, the approach is presented in a rather informal
way, while the second one contains some precision concerning its more formal setting. In
the third part, we indicate how this approach could be put into practice with the present
version (3.5) of Atelier B.

Informal Presentation

System Studies

Under this term we usually set, in a relatively casual way, all the re
exions and decisions
situated before the drawing up of the speci�cation documents of the individual parts of
a complete (and complex) system. These parts concern the various, possibly distributed,
components of the software (if any), the physical equipment and, �nally, the necessary com-
munication between them.

These system studies are thus mainly aimed at elaborating the architectural decompo-

sition of a system. They are also aimed at showing that the system being considered is
viable. Besides, they can end up in the determination of a certain number of fundamental
parameters �xing the main dimensions of the system.

The Classical Approach

Most of the time, in industry, such studies are made by very competent domain-expert
people, whose main source of inspiration simply comes from the previous system they have
made (its �ne points as well as its weaknesses).

Such studies are sometimes \validated" by means of a number of simulations, consisting
in building some behavioral models of the system in project, simulations which are then
executed under the form of various monitored sessions. The results of the monitoring are
analyzed in order to determine whether the system (or rather its model) works according
to certain prede�ned criteria.

1 Many of the ideas in this document have been inspired by various work done around Action

Systems.

Rationale for a Formal Approach

As a complement to the above approach, our thesis is that these system studies can be
greatly enhanced by using the main ingredients that have proved to be quite successful in
software speci�cation and design, namely: formal (mathematical) description, re�nement
techniques, decomposition, and mechanized proofs.

The reason for the above belief comes from the understanding that there is no funda-
mental distinctions to be made between the various discrete automatons that compose a
system. Whatever its �nal implementation (as a piece of physical equipment, or a piece of
software, or as a chip, etc), each component reacts to some outside impulses, is somehow
connected to some others, is plunged within
ows of data, and eventually executes a pre-
de�ned \program", etc. Globally, they together form a vast entity whose dynamic behavior
is distributed among various communicating parts.

The Complexity Gap

The overall rational study of such complex entities seems at �rst glance to be absolutely
unfeasable: we do not know which string has to be pulled �rst in order to understand what is
going on. More seriously, we do not know even how to characterize what the system \does".
And the very initial requirements documents that are at one's disposal are not very helpful
in that matter because they, quite often, correspond to some mental implementations. They
should rather give the general properties of the intended system.

In software development, we had sometimes a notion of \input" (and thus of pre-condition)
and one of \output" (and thus of post-condition), notions that helped us de�ning the �rst
handle on which a formal development could be elaborated.

Here the situation is quite di�erent in that we have a completely closed system containing
a large number of concurrent components, each of them being subjected to many transi-

tions occurring, most of the time, asynchronously. The need for new methods for studying
systems at this level is badly needed: the use of informal approaches is clearly not su�cient.

Mathematical Simulation

The main idea of the proposed approach consists in studying our future system by means of
one (or better several) model , on which we intend to apply certain correctness criteria. In
this respect, this approach does not seem to be very di�erent from the simulation technique
which was alluded above.

As a matter of fact, the di�erence is not so much in the modelling itself than in the
way we are going to exploit it. The criteria might be the same, but rather than analyzing
the results of a number of simulation sessions and conclude that they con�rm the selected
criteria, we are going to prove directly on the model that it is indeed the case.

This change in the mode of exploitation of the \simulation" has a number of interesting
consequences:

1. Rather than using a simulation language in order to build our model under the form of
a simulation program, we are going to use directly a mathematical notation, which will

2

allow us to represent the model in a way that will be more convenient than a simulation
program (for expressing the statements to prove and to prove them).

2. Rather than limiting ourselves to a single simulation program, as is usually the case, we
can very well use a series of embedded models that are supposed to be re�nements of
each others. In this way, the various criteria to prove can be accumulated and proved
immediately at their right level of abstraction: the proof process accompany the model

elaboration process.

3. Once a model has reached a dangerous level of complexity (so that the proofs might
become cumbersome), it will be possible to decompose it into separate models: the
architecture is born.

Observations

A series of questions that might come to mind at this point concerns the notion of model:
What is a model ? How to build one ? etc. Everyone has a vague notion of what a model
is, but this is not su�cient to undertake a formal construction: we clearly need to give to
this concept a very precise de�nition.

For building the model (at a certain level of abstraction) of a future system, the idea is
to place oneself mentally above the system in question and try to imagine what we could
observe from there.

Such observations might very well be quite \physical": for instance, we could observe
trains moving on a certain network, and sometimes people going in and out of them. A
careful observation could lead to some laws that seems to be obeyed: trains never touch
each other while in movement, people only go in or out of trains while these are stopped, etc.

State and Events

These observations are essentially made by means of two kind of notions: a notion of ob-
jects (trains, people, etc) and a notion of movement (of trains, of people, etc). The former
constitutes the state of the model (this is a static notion), while the latter constitutes the
events (this is a dynamic notion) that may occur and that we are able to observe.

The properties of the state are the, so-called, safety properties, whereas the properties
of the events are the, so-called, liveness properties. Proofs might be performed to validate
these two kinds of properties, which have no reason, a priori, to be coherent.

Notice that the physical objects that are represented in our model at this level corre-
sponds to the observation of the reality : they are perfectly well de�ned objetcs although
probably not with the accuracy we might have in further (re�ned) models.

The Parachute Paradigm

Once you have made some observations and correponding proofs at a certain level \above"
the system, you might envisage to step down a little and thus be able to observe other
interesting things: that is, a more precise state and more events, which you were not able

3

to distinguish before because you were too high in the sky.

For instance, one might observe some tra�c lights along the track as well as doors in
the trains, and of course also some new events like the opening and closing of doors or the
changes in the status of the tra�c lights. Finally, new laws governing now trains, people,
tra�c lights and doors can be set up. These new observations should certainly not invalidate
the previous ones, again they should rather make them more accurate.

From this level, you might step down one more time, and so on: this is the so-called
parachute paradigm. What we have just brie
y explained here is the way we can re�ne our
models in order to have a gradually more precise view of all the facets of the system. What
is important to stress at this point is that all the properties that are proved at a certain
level remain valid along the path leading gradually to the ground.

From the Physical State to the Information and Communication State

By going further down, we start to observe things that are no so much physical in nature as
was the case when we were very high up in the sky: we are now able to observe the behavior
of some particular objects called data.

This is because we start investigating some parts of the system that are supposed to
\intelligently" control others. Clearly, such parts were not \visible" at the beginning of the
modelling process. In order to play their rôle, such control parts have to memorize a certain
synthesis of the overall physical situation. This memory forms the, so-called, information
part of the state.

At a given moment, such a memorized picture re
ects a physical reality that is not ex-
actly the same as the one that takes place in the physical world at that very moment: the
\reality", which is represented in the memory, belongs to a certain (usually close) past. This
is due to the fact that the composition of the memorized picture is realized with the help of
a number of sensors that are supposed to make some physical measurements, which are not
instantaneous. Moreover, once determined, the information should be transmitted to the
control parts through some communication channels, thus adding an extra delay between
the physical situation and its re
ected picture. Such channels carry the messages forming
yet another part of the state, the communication part.

Conversely, the control parts of the system do elaborate some decisions aimed at e�ec-
tively controlling the physical reality. Such decision are thus supposed to be feedbacked
onto the physical parts of the system by means of symetric communication channels and
eventually some actuators.

We are here at the heart of the system studies. Of course the overall construction we have
just sketched in very general terms has to be built very gradually by means of a series of new
re�nement steps. At each such step, we have to prove that the control and communication
parts in construction ensure the preservation of the laws, only elaborated in terms of the
physical state at the very early stages of the developmement, despite the fact that these
control parts can only \reason", as mentioned above, on a fuzzy picture of the reality.

Notice that all this is elaborated by using the same basic ingredients of our models, namely
states and events. Also notice that, from the point of view of the modelling technique, no

4

special distinction has to be made between those parts of the state that are physical, those
that deal with the controling data, and �nally those dealing with the sensors, the channels
and the actuators.

Decomposition: Building the Architecture

In the previous section, we have extended the physical model, elaborated at the early stages
of the development, with some control and communication parts. But, we still have a single
model. Clearly, that model may now be quite large and thus di�cult to develop further: it
may have a state made of many parts \activated" by many events.

This is the right moment to envisage decomposing the model into several sub-models.
A \natural" decomposition is clearly one where we have a sub-model for the physical and
communication parts and one for the control part. But this is only one among many other
possible decompositions: we could very well have several control parts as well as several
physical parts comunicating with each other. It could also very well be envisaged to have
several control parts forming separate models communicating with each other through some
communication channels (this is just a distributed network).

For instance, in a train system, we could have some control parts replicated and embarked
within trains and other control parts replicated and installed along the track, and perhaps,
yet another control part at the extremity of some line, etc.

The rôle of the decomposition is clear. Once separated from the main body, a sub-model
can be developped further independantly from the rest of the system, which become its,
so-called, environment. Notice that this notion of is essentially relative: each sub-model (or
group of sub-models) being the environement of others and vice-versa.

What is important to notice here is that we clearly favor a decomposition process over a
composition one. This does not mean that we cannot compose existing parts: it only means
that such a composition has to be made under the supervision of a decomposition process.
This is the only way that ensures that some global laws are maintained while the composing
parts are working together. Composing components in the absence of a decomposition pro-
cess may lead to the formation of some unexpected behaviors of an individual component
due to the presence of others.

Deamons

An important outcome of this global event-driven approach is that it allows us to easily
take into account the unexpected arrival of all sorts of \bad" things such as failures, forgery
of information contained in communication messages, long delays, etc.

Formalizing this is very easy by means of asynchronous events occurring spontaneously.
These are the, so-called deamons. We are then in a good position to formally prove that the
system works \correctly" in spite of them. And thus guarantee that it is able to resist to
such attacks that may occur at any time.

Conclusion: Summary of the Guidelines

Here is a summary of the guidelines that have been described in the previous sections:

5

1. Start with a very simple physical model (de�ne the state and the events).
2. Make this physical more accurate model by means of a series of re�nement steps.
3. Introduce some of the control parts together with some communication parts.
4. Loop on points 2 and 3.
5. Decompose the model into sub-models.
6. Loop on steps 2, 3,4, and 5 for each sub-model.
7. At each step, feel free to introduce attacking deamons.
8. At each step, don't forget to do the corresponding formal proofs.

Formal Presentation

Mathematical Model

The formal part of a System Study is made up of a series of mathematical models. Each
model is supposed to re�ne the previous one. This series demonstrates the progressive tak-
ing into account of the global system which we want to study.

The State

A model is �rst presented by means of a certain number of constants and variables. In
practical terms, these constants and variables mainly show simple mathematical objects:
sets, binary relations, functions, etc. Moreover, they are constrained by some conditions
expressing the invariant properties of the model.

These variables and constants, linked by the invariant properties in question, describe
the state of the dynamic system which is to be analyzed. They can represent \data" of
very diverse nature. For example, they can have a certain counterpart in future software,
but they can also correspond to the formalization of certain physical equipment, or even to
messages transiting via a communication network.

The Events

Besides its state, a model contains a number of events which show the way it may evolve.
These events are only supposed to be observable, they are in no way actions that can be
\called". Indeed, we are not describing the realization here, all be it abstract, of a system.
We are rather making a mathematical simulation, which allows us to reason about the future
system we are going to construct. This reasoning is precisely what is going to allow us to ana-
lyze very early on the behaviour of our future system and to draw up a possible architecture.

Each event is composed of a guard and an action. The guard is the necessary condition
under which the event may occur. In other words, once its guard hold, the occurrence of the
event may be observed at any time (but it may also never be observed). As soon as the guard
does not hold however, the event cannot be observed. The action, as its name indicates, de-
termines the way in which the state variables are going to evolve when the event does occur.

It is possible for several events to have their guards held simultaneously. From this point
of view, the model present a certain external non-determinism. Notice that in case several
guards hold simultaneously, no two event cannot be observed to occur \together": events

6

are atomic.

Lastly, we must observe that the events are, a priori, asynchronous. Possible synchronisms
are only the consequence of the actions of some of them on the guards of others.

Practical Form of an Event

Practically speaking, an event is presented in the following form:

xxx b=
any x; y; : : : where

P (x; y; : : : ; v; w; : : :)
then

S(x; y; : : : ; v; w; : : :)
end

where the identi�ers have the following signi�cation:

{ xxx is the name of an event,
{ x; y; : : : denotes a certain number of variables local to the event,
{ v; w; : : : denotes a certain number of state variables or constants of the model,
{ P (x; y; : : : ; v; w; : : :) denotes a predicate,
{ S(x; y; : : : ; v; w; : : :) denotes the action associated to the event.

In this case, the guard of the event corresponds to the following existential predicate:

9 (x; y; : : :) � P (x; y; : : : ; v; w; : : :)

In other words, the necessary (but insu�cient) condition for the event xxx to take place
with the current value of the state variables or constants v; w; : : : of the model, is that it be
possible to assign to the local variables x; y; : : : , of the event xxx, some values making the
predicate P (x; y; : : : ; v; w; : : :) true. As can be seen xxx presents a certain latitude in the
choice of possible values for the local variables x; y; : : : . We can speak here about internal
non-determinism.

The action presents itself in the form of the simultaneous assignment of certain state
variables a; b; : : : to certain expressions E;F; : : : depending upon the state of the system
and the local variables of the event (it is to be noted that those variables which are not
mentioned in the list a; b; : : : do not change):

a; b; : : : := E;F; : : :

Sometimes, the event can have the simpler following form:

xxx b=
select

P (v; w; : : :)
then

S(v; w; : : :)
end

7

In this case, there are no variables local to the event, and the guard just correponds to a
condition holding on the state variables of the model.

Consistency: Preservation of the Invariant

Once a model is built, one must prove that it is consistent. One has to prove the preservation
of the invariant by each event of the model. More precisely, it must be proved that the action
associated to each event modi�es the state variables in such a way that the corresponding
new invariant holds under the hypothesis of the former invariant and of the guard of the
event. For a model with state variable v and invariant I(v), and an event of the form:

any x where

P (x; v)
then

v := E(x; v)
end

the statement to be proved is thus

I(v) ^ P (x; v)) I(E(x; v))

Model Re�nement

The model structure we have described above is simple enough. However, it would be impos-
sible to formalize a complete real system by means of such a single model because the state
would be far too complicated and the number of events far too large. In order to master
the modelization process, we shall use two complementary techniques: �rst the re�nement,
second the decomposition. In this section, we deal with re�nement.

Re�ning a model consists in re�ning its state and its events.

A concrete model (with regards to a more abstract one) has got a state that should be
related to that of the abstraction through a, so-called, gluing invariant. Sometimes the con-
crete state is a simple extension of the abstract one so that the abstraction relation is then
just a projection. But in general the abstraction relation can be any relation that should
however be de�ned on all the concrete states.

Each event of the abstract model is re�ned into a corresponding event of the concrete
one. Informally speaking , a concrete event is said to re�ne its abstraction (1) when the
guard of the former is stronger than that of the latter (guard strenghtening), (2) and when
the gluing invariant is preserved by the conjoined action of both events.

Another frequent way of re�ning an event system consist in adding new events. This
corresponds to observing the system with a �ner granularity than in the abstraction. Such
new events have an implicit (hidden) counterpart in the abstraction, namely, the event that
does nothing.

8

The new events that are introduced at some level must obey a speci�c constraint: they
must not monopoly the \control" for ever. In other words, they should not have the possi-
bility to be �red inde�nitely without letting the old events be executed from time to time.
Practically, this means that, should the control be given exclusively (guards permitting) to
the new events, then, at some point, the disjunction of their guards should become false.

A global constraint of a re�ned model with regards to its abstraction deals with deadlock.
Since normally a system should run for ever, then so must it be the case for its re�nement.
But more generally, we shall state that a re�ned model should not deadlock more frequently

than its corresponding abstraction.

Proofs of Correct Re�nement

Suppose we have an abstract model with state v and invariant I(v), and also a corresponding
concrete model with state w and gluing invariant J(v; w). If an abstract and corresponding
concrete events are as follows:

any x where

P (x; v)
then

v := E(x; v)
end

any y where

Q(y; w)
then

w := F (y; w)
end

then the statement to prove is

I(v) ^ J(v; w) ^ Q(y; w)) 9x � (P (x; v) ^ J(E(x; v); F (y; w)))

This states that for each possible choice of the local variables of the concrete event there is a
choice of the local variables of the abstraction that makes the gluing invariant (as modi�ed
by both events) true: indeed, the concrete event re�nes its abstraction. As can be seen the
concrete guard is stronger than its abstract counterpart. In case of a new evnt of the form

any y where

Q(y; w)
then

w := F (y; w)
end

the statement to prove is simpler since that new event is only suppose to re�ne the non-event
that does nothing. Formally

I(v) ^ J(v; w) ^ Q(y; w)) J(v; F (y; w))

Proofs of the Impossibility of Monopoly of New Events

Given a new event of the form

9

any y where

Q(y; w)
then

w := F (y; w)
end

we must prove that, under the invariant, the event decreases a certain (natural number)
variant expression V (w) that has to be exhibited. Notice that this variant expression must
be the same for all the new events. This decreasing is thus a global property of the new
events. This is because we want to prevent their entire population to take control for ever.
Should the variant be distinct for, say, two events, then they could very well stop individually
after some steps, but the other one could then take control in an endless ping-pong: this is
clearly something we want to avoid. Formally

I(v) ^ J(v; w) ^ Q(y; w)) V (F (y; w)) < V (w)

Proofs of the Limitation of Deadlocks

For each abstract event of the form:

any x where

P (x; v)
then

v := E(x; v)
end

and for an abstract invariant I(v) and a gluing invariant J(v; w), the following statement
must be proved:

I(v) ^ J(v; w) ^ P (x; v)) disjunction of the concrete guards

where the right hand side of the implication denotes the disjunction of the concrete guards.
In other words, whenever an abstract event can be �red then it must also be the case for a
concrete event (not necessary however the corresponding concrete event, it could be one of
the new events). Notice that the guarding predicate P (x; v) that is on the left-hand side of
the implication now corresponds to an abstract event. This contrasts with all the previous
proof statements.

Practice with Atelier B

The B language and, a fortiori Atelier B, does not support directly all the practicalities
of the formal approach we have just presented. It is possible however to fully simulate them
and thus exactly obtain the corresponding proof obligations.

10

The purpose of this section is to explain how this can be done. As Atelier B already
provides all the proof obligations for the maintenance of invariants and for ensuring correct
re�nements, the two main points we are going to deal with here are (1) the handling of the
new events (together with the speci�c proof obligation associated with them) and (2) the
limitation of deadlock.

The Handling of Events

Events are encoded under the OPERATIONS clause as \normal" operations having no
pre-conditions and no input or output parameters. They are thus introduced either by means
of the key-word begin when the guard is missing or the construct select : : : then when
there is a simple guard, or �nally with the construct any : : : where : : : then in case of a
quanti�ed guard.

As it is not possible, at the present time, to introduce any new operations in a re�nement,
the new events introduced at some stage must already exist in the previous abstraction.
And since a new event introduced at a certain level is supposed to re�ne skip, its abstraction
is thus simply de�ned with the \body" skip. The burden is that such \dummies" should be
present in all previous abstractions, and thus, in principle, known right from the beginning
of the development. Practically, the situation is not so bad since adding (on the
y) these
skip events to an abstraction does not cause any further proofs: the only price to pay is
then just to add these dummy events, re-type-check and re-generate the proof obligations
(the merging with the previous proof status will thus determine that no new proofs are
necessary). You can press a siggle key, the \prove" key, and the type-checking and proof
obligation generation will be performed automatically.

As explained above, each event introduced at some stage must be proved to decrease a
certain variant expression (which is usually a natural number expression V). We remind the
reader that this expression is the same for all new events introduced in a given re�nement.
The corresponding proof obligation would have been very easy to generate should we have
the possibility to associate, within the B language, a certain post-condition to an operation.
Suppose for a moment that it is possible by means of the following construct (easily exended
to the other forms of events):

xxx b=
any y where

Q

then

S

post

P

end

Here the post condition P stipulate that by the end of the \execution" of the event the
predicate P should hold. Notice that P might contain some state variables, say w, denoting
the value of the corresponding variable after the execution, but also some variables of the
conventional form w$0 denoting the value of that same variable w before the execution (this
is a standard convention in Atelier B), formally

11

xxx b=
any y where

Q

then

S

post

P (w;w$0)
end

In order to simulate such a construct within the present B language, we are going to replace
this operation by the following one (where we have replaced w$0 by the fresh variable wz
that is \assigned" the value w before execution as indicated):

any y where

Q

then

let wz be

wz = w

in

S ; pre P (w;wz) then skip end

end

end

The speci�c proof obligation generated \naturally" byAtelierB in that case is the following
(where I, is the abstract invariant and J is the gluing invariant):

I ^ J ^ Q ^ wz = w) [S]P (w;wz)

In the very case we are interested in, namely the decreasing of a certain quantity V (w),
this would solve our problem in a very simple way by using the predicate V (w) < V (w$0).
Here is the operation we obtain from the example already studied above:

any y where

Q(y; w)
then

let wz be

wz = w

in

w := F (y; w) ; pre V (w) < V (wz) then skip end

end

end

This yields the following proof obligation

I(v) ^ J(v; w) ^ Q(y; w) ^ wz = w) [w := F (y; w)](V (w) < V (wz))

that is

I(v) ^ J(v; w) ^ Q(y; w) ^ wz = w) V (F (y; w)) < V (wz)

12

yielding

I(v) ^ J(v; w) ^ Q(y; w)) V (F (y; w)) < V (w)

which is exactly the desired result.

Limitation of Deadlock

In order to obtain the proof obligation stipulated above for the limitation of deadlock,
we proceed as follows. We introduce an extra boolean variable ddlck, and an extra event
deadlock de�ned at each step:

deadlock b=
select

: disjunction of guards
then

ddlck := true

end

When this event is re�ned, the proof obligations generated \naturally" by Atelier B results
in the following (where I(v) is the abstract invariant and J(v; w) is the gluing invariant):

I(v) ^ J(v; w) ^ : disjunction of concrete guards) : disjunction of abstract guards

yielding by contraposition

I(v) ^ J(v; w) ^ disjunction of abstract guards) disjunction of concrete guards

Since we have a disjunction in the antecedent of this implication, this statement can be
decomposed in an obvious way, yielding a series of proof obligations corresponding to each
abstract guard. This yields exactly the formal result presented above (where P (x; v) is one
of the abstract guards):

I(v) ^ J(v; w) ^ P (x; v)) disjunction of concrete guards

13

