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Abstract

We introduce a numerical method for fully nonlinear, three-dimensional
water surface waves, described by standard potential theory. The method
is based on a transformation of the dynamic water volume onto a fixed
domain. Regridding at each time step is thereby avoided. The transfor-
mation introduces an elliptic boundary value problem which is solved by
a preconditioned conjugate gradient method. Moreover, a simple domain
imbedding precedure is introduced to solve problems with an obstacle in
the water volume. Numerical experiments are presented and they show
nice convergence properties of the iterative solver as well as convergence
of the entire solution towards a reference solution computed by another
scheme.

1 Introduction

The purpose of this paper is to introduce a new numerical method for solving
fully nonlinear free surface waves modelled by standard potential theory. One
major application area of this method is typically the calculation of wave forces
on marine installations.

These types of wave problems have traditionally been addressed by linear
theory or second order perturbation theory to estimate weak nonlinear effects.
The governing Laplace equation has almost exclusively been solved by boundary
element methods (BEM), usually with piecewise constant elements. Important
contributions to solving the fully nonlinear wave problems using BEM are briefly
reviewed by Ferrant [11]. In linear or second order theory one can derive rele-
vant Green functions for the integral equation such that it is only necessary to
discretize the surface of the marine installations, and at most a smaller part of
the mathematically flat water surface in the vicinity of the installations. Hence,
the advantage of integral equations and BEM over solving the Laplace equation
directly in the water volume is obvious. Nevertheless, in the fully nonlinear case
the integral equation approach requires discretization of the complete, moving
boundary of the water volume. In this case we will later in this paper give heuris-
tic arguments which show that finite element or finite difference discretization of
the Laplace equation in the water volume may be asymptotically more efficient
than BEM. New preconditioning techniques for Laplace equation solvers are the
main reason for this result.

Solution of the Laplace equation arising in the model of fully nonlinear water

waves around marine installations by the finite element method (FEM) has



received surprisingly little attention in the literature. To our knowledge, Eatock
Taylor [21] is the pioneer of applying finite element methods in this respect.
Equally novel is the spline method of Even Mehlum described in [17] in which
smooth spline functions in connection with spectral expansion are used to solve
the Laplace equation.

The method presented here is based on a finite element discretization of
the Laplace equation in the water volume, whereas the free surface boundary
conditions are discretized by standard finite difference techniques. The choice
of finite elements instead of, e.g., finite differences for the Laplace equation is
mainly motivated by the inherent flexibility of finite elements with respect to
adaptive grids and higher order approximations, that is, p and h — p exten-
sions of FEM, although these extensions will not be discussed herein. Use of
finite elements to treat complicated geometries, due to the bottom topography
and marine installations, is of less importance since we will present a domain
imbedding approach that handles the geometry aspect of the problem without
the need for sophisticated gridding techniques. The possibly complicated ge-
ometry of the free surface normally requires re-gridding of the water volume at
each time step, but we avoid this by a time dependent mapping of the water
volume onto a simple stationary solution domain for the Laplace equation.

Most of the computational effort in this numerical method is devoted to the
solution of the Laplace equation. We use efficient preconditioners in combina-
tion with the conjugate-gradient (CG) method to achieve an optimal solution
method, that is, the total cost of a simulation is proportional to the product of
the number of grid points and the number of time steps. The implementation
of efficient preconditioners is significantly simplified since the mapping of the
water volume and the domain imbedding technique allow the solution domain
for the Laplace equation to be, e.g., a box with a uniform grid.

In the following sections, we first outline the mathematical model for non-
linear water surface waves. Then we present a brief discussion of the choice
of finite element methods versus boundary element methods for solving the
Laplace equation. This discussion forms the background for deriving a modified
system of governing equations. Thereafter a new, efficient method for solving

the Laplace equation is described. Based on this, we formulate the numerical



algorithm for the dynamic problem. Finally, we evaluate the performance of the
algorithm in several two- and three-dimensional applications. The associated

simulation programs have been developed using Diffpack [9, 19].

2 The governing equations

2.1 Outline of the mathematical model

Let (Z,y,Z) be the spatial coordinates and let ¢ denote time. We make the
standard assumption that the wave induced velocity field is divergence free and
irrotational. Introducing the velocity potential ¢(z, y, z,1), the governing partial
differential equation, arising from mass conservation in the water volume, is the
Laplace equation VZp = 0. Besides the velocity potential, the free surface
z = n(z,y,t) is the other primary unknown of the problem. The motion of the

free surface is governed by the kinematic and dynamic boundary conditions:

M+ esns + pgng — ez = O, (1)
1.
ptsleitegtel+om = 0. (2)

Here g is the gravitational acceleration in the negative z-direction, and sub-
scripts denote derivatives, for example, 5, = dn/0t. Equation (1) guarantees
that there is no mass transfer through the free surface, while equation (2) is a
force (pressure) balance at the surface. At solid boundaries, the normal deriva-
tive of ¢ must equal the normal velocity of the boundary. However, in this
paper we will study problems with fixed solid boundaries, where dp/dn = 0.
We refer to Whitham [22] for a derivation of the equations above.

The water volumes of interest in this paper can be written on the form
ﬁ(t) = {(fa Y, E) | (i‘ag) € Qfﬂ\st -H<z< n(fvgat)}' (3)

Here, Qzy is a two-dimensional computational domain containing a solid obstacle
with Zy cross section Qg. Both Qzy and Qg are stationary with respect to
time. An example of a solution domain of this type is shown later in Figure
11. To avoid the influence of radiation conditions on the evaluation of the
proposed numerical algorithm, we will restrict the numerical examples to a

water tank such that the boundaries of Qz5 are solid. For simplicity, the depth



H is considered as constant, but the treatment of a space-time dependent depth

function will follow directly from our treatment of the free surface.

2.2 Boundary elements versus finite elements

In modelling water waves, most numerical methods are based on a certain opera-
tor splitting. At a specific time level, equations (1) and (2) are solved at the two-
dimensional free surface to determine the new shape of the three-dimensional
water volume Q, then the Laplace equation V2 = 0 is solved in Q. Of course,
the most CPU-time consuming steps are the discretization of the time dependent
solution domain Q and the solution of the Laplace equation therein.

There is a strong tradition in marine hydrodynamics for solving the Laplace
equation by boundary element type techniques instead of a straightforward finite
element discretization in the volume. The reason for this is that the number of
unknowns in the resulting linear system is reduced. However, modern precondi-
tioning techniques for elliptic boundary value problems have led us to reconsider
this point of view. For a general description and an analysis of boundary ele-
ment methods and finite element methods we refer to the books of, e.g., Becker
[2] and Ciarlet [8].

Let us give a very heuristic comparison between FEM and BEM for solving
the Laplace equation in Q. For simplicity, we consider the case of a square
domain without any internal obstacle and an associated uniform grid with n
grid points in each direction. Thus the number of unknowns is n? for FEM and
n?=1 for BEM, where d = 2, 3 is the number of space dimensions. The system
matrix associated with the finite element discretization is sparse. Using linear
elements, we get five nonzero diagonals in 2D and seven in 3D. Higher order
elements introduce more nonzero diagonals, but it is always a fixed number
independent of n. On the other hand, the matrices arising from a boundary
element discretization are dense.

The matrix-systems can be solved by both direct methods and iterative
methods. For the problems under consideration, iterative methods are known
to be much faster so we assume that both the BEM and the FEM systems
are solved by a conjugate-gradient-type iterative method. It is well known

that BEM matrices are well conditioned, hence an iterative method is expected



to converge in a finite number of iterations Iz independent of n. Since the
computational cost of one matrix-vector multiplication for BEM is the square
of the number of unknowns, the computational cost of solving the BEM-system
iteratively is @(n?) in 2D and O(n*) in 3D.

The cost of one matrix-vector multiplication in FEM is O(Np) where Np is
the number of nonzeros of the FEM-matrix (recall that N is of the same order
as the number of unknowns). Without any preconditioning, the FEM-matrix is
well known to have a spectral condition number kp ~ O(h~?), where h ~ 1/n
denotes the global mesh size. Since the number of CG iterations is of order
O(ﬁl/z) (see Axelsson [1]), this leads to O(n) iterations and a computational
cost of @(n?) for 2D problems and @ (n*) for 3D problems.

For the last 20 years there has been a lot of research activity connected to the
development of preconditioners for elliptic boundary value problems. A recent
survey of this field is provided by Bruaset [5]. One particularly simple scheme
is known as modified incomplete LU-factorization (MILU). Tt was introduced
by Gustafsson [13] and will be further discussed below. This preconditioning
technique reduces the spectral condition number of the FEM matrix to O(h~1),
thus requiring O(n'/?) iterations. This leads to a computational cost of O@(n*?)
in 2D and of O(n3?) in 3D.

However, it is also possible to derive preconditioners which result in uniform
condition numbers. Hence, the number of CG iterations needed to solve the
discretized Laplace equation become independent of n. With these optimal
preconditioners it only requires a computational cost of @(n?) in 2D and O(n?)

in 3D for FEM. A summary of these heuristic arguments is given in Table 1.

| Discretization method | FEM | BEM |
Preconditioning MILU Opt. precond.
Space dimensions 2D 3D 2D 3D 2D 3D
Number of unknowns O(n?) 0R*) | 0% | 0x) | On) | On?)
Iteration number 0(n1/2) 0(n1/2) o) (1) (1) o)
Computational cost O(n*%) |OR**) | O(n?) | O(n®) | O(n?) | O(nY)

Table 1: The table shows heuristic estimates of the number of iterations and of
the computational cost for BEM and for FEM.

Based on these observations, we find it interesting to consider the application

of FEM for solving the Laplace equation in the three-dimensional water volume



using a preconditioned conjugate gradient (PCG) method.

2.3 Transformation of the physical domain

As discussed above, the solution of the Laplace equation is the most time-
consuming part when modelling fully nonlinear water waves. Notice that the
Laplace equation must be solved at each time step in a time dependent geometry
Q(t) as defined in equation (3). Our approach to an efficient solution of the

Laplace equation is founded on two basic demands:

1. We do not want to re-grid the water volume Q at each time step since this

is a complicated, time-consuming process.

2. We want to solve the linear system arising from the finite element dis-
cretization by a preconditioned conjugate gradient (PCG) algorithm where
the associated linear operator is uniformly well conditioned with respect

to the mesh partition parameter n.

The first demand can be met by introducing a simple transformation of the
water volume, in which we map Q onto a stationary domain Q on the form

Q=A{(z,9,2) | (,9) € Quy\Qs, —H <z <0}

with boundaries fixed in time. In this way we avoid the re-gridding process at

each time step. The transformation p: (Z,y,z) = (z,y, z) can be defined as

T =2, y=y z= <E;H_1>H7 (4)

where f(z,y,t) = n(z,y,t) + H and f(z,y,t) > 0. However, the case of f =0

means a dry spot in the physical domain and will not be considered further.
Hence, we assume that |n(Z,y,?)| < H throughout this paper. Note also that
the Zy-coordinates are the same as the zy-coordinates in the transformation,
we thus drop notations z,y and use z,y instead throughout the remaining text.

The Jacobian matrix J associated with the transformation p has the form

1 0 0

0 1 0 5
J(z,y,2,t) = _(z-}-H)fx _(Z+H)fy E . ©)

7 ! !

Hence, the transformation p is well defined if f is positive. Introducing the

transformation p in the Laplace equation, the solution domain becomes much



simpler at the cost of a time-dependent, variable coefficient in the governing

partial differential equation. The transformed equation reads
V- (KVg)=0 inQ, (6)
where the coefficient matrix K (z,y, z,t) is given by

1
K(I,y,z,t) = —JJT

det J
f 0 —(z+ H)f»
_ 1 0 ! , CETEL )
H G+ H) e (e + ), H+(z+f;) (fa+ 1))

Normally, we consider the two-dimensional computational domain €., on
the form Qg, = [0, L1] x [0, L,]. Hence, the new three-dimensional solution
domain Q has a simple box shape. However, complicated geometries occur when
the water volume contains a solid obstacle. This may demand sophisticated
gridding techniques. In these situations, a domain imbedding approach (also
referred to as the method of fictitious domains) may be useful in overcoming
this difficulty. Roughly speaking, the function K is extended to Qg by putting
it equal to a small value € inside the solid obstacle. Here, € represents a non-
physical “permeability” and acts as a regularization parameter. More precisely,

we replace K in the governing partial differential equation (6) by K., where

eI (z,y) € Qg,
Ke= { K ELZ% € Q:y\QS (®)

Here, I denotes the identity matrix.

It has been shown, see [18], that the errors in the discrete finite element
approximations to ¢ and Vg are of order € in proper norms regardless of the
mesh size, as long as the element boundaries coincide with the boundaries of
the obstacle. To treat complicated geometries accurately, one can hence choose
€ small enough so that the errors due to “water flow” through the obstacle are
negligible in comparison with other discretization errors.

Introducing domain imbedding, the governing partial differential equation

can always be solved in the simple box-shaped computational domain

Q =10, L1] x [0, Ly] x [-H, 0]. (9)



Hence we can choose, e.g., a uniform partition of Q. More important, it makes
the implementation of efficient preconditioners easy. This will be addressed in

Section 3.

2.4 The system of governing equations

We will now list the complete initial-boundary value problem to be solved in
this paper. It is convenient to introduce two new variables; the potential and

the z-component of particle velocity evaluated at the surface 1 (see Zakharov

[23]),

F(z,y,t) = olz,yn(z,y,1),1), (10)

G(Iayat) = gog(m,y,n(:t‘,y,t),t)- (11)

Moreover, we split the boundary of €2 into three non-overlapping components:
0Q = 'y UT3 UT3. Here, I'y represents the solid walls: z = 0, Ly, y = 0, Ly,
z = —H; Ty is the free surface z = 0 outside the obstacle ((z,y) ¢ Qs), and '3
is the remaining part (the free surface “inside” the obstacle). With these new
variables, we can write the complete system of partial differential equations and

boundary conditions on the following form.

V-(K.V¢) = 0 inQ, (12)

g—i = 0 onTy, (13)

¢ = F onTy, (14)

?)_f = 0 onTjg, (15)

N+ Fonie + Fyny — (1+ 02 +n,)G = 0 on Ty, (16)

Fot g(F24 F) = g0+ 2 +m)G g0 = 0 onTs (17
n(z,y,0) = n° on Ty, (18)

F(z,y,0) = 0 on Ty, (19)

G(z,y,0) = 0 onT,. (20)

The latter three conditions reflect that the surface is initially at rest with a
prescribed shape z = °(z, y). A similar formulation have been used by Mehlum

in [17].



3 Preconditioning

3.1 Basic theory

It is readily seen that the system (12)-(15) is a standard, variable-coefficient
Laplace-type equation with Neumann and Dirichlet boundary conditions. Its
finite element formulation is straightforward, cf. e.g. [15], and gives rise to a

linear system on the form
AE = b, (21)

where A is a sparse, symmetric and positive definite matrix, and € is a vector
of the unknown ¢ values at the grid points of Q. Such linear systems can be
efficiently solved by the PCG method, see e.g. Axelsson and Barker [1]. That

is, instead of solving (21) explicitly, we solve the equivalent system
M~ 'A¢ = M™'b, (22)

where M is also a sparse, symmetric and positive definite matrix. The precon-
ditioner M should be constructed such that M is spectrally close to A and
such that problems on the form Mz = g can be efficiently solved.

As mentioned above, over the last 20 years, preconditioners for the efficient
numerical solution of discretized second order elliptic problems have been exten-
sively studied. The most popular methods are based on domain decomposition
techniques, multigrid methods and incomplete factorizations, see e.g. Hackbusch
[14] and Bruaset [5]. In this paper we will consider so-called optimal precon-
ditioners for systems on the form (21). Tt is proved in [7] that a very small
domain imbedding parameter € does not destroy the optimal convergence prop-
erty of the PCG method. In fact, it is shown that the number of CG-iterations
is bounded independently of ¢ and the mesh parameter n.

Recall that we have mapped the dynamic, physical domain Q(t) onto a sta-
tionary computational domain Q. Hence, we get an elliptic boundary value
problem posed on a rectangular domain in 2D or a box in 3D. In this case,
we can use fast solvers (employing FFT), or multigrid methods for the Lapla-
cian as preconditioners for the system (21), see e.g. Greenbaum [12]. That is,

the preconditioner M is defined as the matrix associated with a finite element



discretization of the following problem

V3 =0 inQ,

%:0 on T UT3, ¥ =10 on Ty, (23)

where we use the same discretization method and the same element type as for
the system (12)-(15). In this case, it is well known that the number of CG-
iterations needed to solve (22) is bounded independently of the mesh partition
parameter n. Note that only the operator associated with the boundary value
problem for i is used, not the solution (¢ = 0).

Let £, be the m’th approximation to the solution £ of (21) from the pre-
conditioned CG-method applied to (22). Then the relative error satisfies

IE = €nlla _
e

m ~ int <%1/K(M_1A) In ;) (24)

CG-iterations, see e.g. Axelsson [1]. Here, o > 0 is the error level, k(M ™' A)

in at most

denotes the spectral condition number of M ' A and ||| 4 denotes the standard
energy norm associated with the matrix A. Since M is the matrix associated
with a finite element discretization of the problem (23), it is well known that

the spectral condition number of M ™! A satisfies

max ()\max(K(xv Y, 2, t)))
K(M~'4) < v
- (min)()\min(K('ra Y, 2, t))) ’
‘1/‘7y7z

see e.g. [3] and references therein. Here, K is the matrix defined in (7) and Apax
and Apin denote respectively the maximum and minimum eigenvalue of K at a
specific time level.

For simplicity we consider this estimate closer in the 2D case, i.e. (z,z) €

Qy = [0, L] x [-H, 0]. The generalization to 3D is straightforward. We find for

2D cases that
max (r + /72— 4)

k(M~1a) < &) ,
min (r —Vr? - 4)
(z,2)
where
_f  H  (+H?fRP .
r(z,z,t) = i + 7 + 71'{]” (25)

10



and f(z,t) = n(z,t)+H. Next, if rmax = max r(z, z,t) = max r(z,0,¢) denotes

(w,2) (=)
the maximum value of r in Q5 at a specific time level then

N
w(M~14) < Tmax T Vimax — 2 (26)

2
Tmax — rmax - 4

Tt is readily seen that r(z, z,t) > 2 and since |5(z,t)| < H it can be shown that

max f H mzin ! H ) H

2
max < z 3 B B ( a:)
" _max( H +maxf H min f +m1nf m?x|f |

(27)

Hence, if |fy| is bounded then it follows from (24)-(27) that the number of
CG-iterations needed to solve the preconditioned system associated with a 2D
case is bounded independently of n. Very steep waves, e.g. close to breaking,
will therefore lead to an increase in the number of iterations in the present
method. But the number of iterations still remains independently of the number
of unknowns.

In order to apply the preconditioner, M we must be able to solve systems

on the form
Mz=g (28)

efficiently. Tt is well known that problems on this form can be solved in O(N)
operations, where N denotes the number of unknowns, using domain decompo-
sition techniques or multigrid methods.

However, applying the domain transformation technique, described in the
previous section, the problem (23) is posed on a rectangular domain in 2D and
a box in 3D. For such problems FFT-based fast solvers for the efficient numer-
ical solution of the discretized Laplacian (28) have been thoroughly studied by
several authors, see e.g. [6] and [10]. In general, these solution methods require
O(N log N) arithmetic operations. Moreover, in [7] we proved that the number
of CG-iterations needed to solve (22) is bounded independently of the domain
imbedding parameter e.

For later use in the paper, we introduce the abbreviations PCG-FFT and
PCG-MG for the conjugate gradient method which uses FFT-based fast solvers
or multigrid, respectively, as the preconditioner. PCG-MILU will indicate the
use of the MILU preconditioner [5, 13].

11



3.2 Numerical experiments; simplified cases

In this section we present some examples illustrating the behavior of the domain
transformation technique and the FFT-based preconditioner described above.
Simulations based on the full model (12)-(20) in 2D and 3D will be presented
in a later section.

We solve a typical variable-coefficient Laplace-type problem on the form
(12)-(15) that arises at each time step in the numerical algorithm for the full
wave problem. For simplicity, we restrict our attention to a two-dimensional
computational domain [0, 7] X [, 0] and prescribe three stationary water sur-

face functions:

m(z) = 0.22%7—2x)%,
n2(z) = —=0.7z—7/2|,
m(z) = —0.52%(m — z)sin(z).

Figure 1: Three stationary water surface functions; The dashed-dotted, dashed
and solid lines represent 11, 12 and 7z, respectively.

The first and third surface funtions correspond to smooth waves, whereas 7
has a discontinuous derivative (see Figure 1). We want to study the influence

of the smoothness of the surface on the performance of the PCG method. We

12



solve equation (12) with d¢/dn = 0 on ¢ = 0,7 and z = —H, while at z = 0
we use the Dirichlet condition ¢(z,0) = ¢(®)(z, 2(z, 0)), where
1 ~ o
go(e)(:b, zZ(z,2)) = 3 [sin(e_(z+27r) cos x) cosh(e_(z'"z”) sin z)

+sin(e” cos z) cosh(e” sin x)] .

One can then verify that o(z,z) = ¢(¢)(z, Z(z, 2)) is the exact solution of the
problem. With this exact solution we can easily investigate the accuracy of the

proposed numerical strategies.

3.2.1 Convergence of the numerical solutions

First we investigate whether the convergence rate of the finite element method
is affected by the domain transformation or the smoothness of the surface. The
errors of the finite element solutions are measured in the discrete L.,- and La-
norms, defined by

1/2

1 N
lollace =, max il lgllaz = N,legj'z :
‘7:

where ¢ is a discrete finite element function on a uniformly partitioned grid,
and g;, 7 = 1,..., N, denote the nodal values. Assuming an error function
E(h) = Ch®, we can estimate the constants C' and « from computer experi-
ments. In the following, only « is estimated by comparison of two subsequent
experiments. Gaussian elimination is used as the equation solver, and linear
elements (triangles with three nodes) are used for the discretization. The nu-
merical results are shown in Table 2, where finite element solutions are denoted
by . Clearly, second order convergence is obtained for all test problems. Hence,
it seems that the expected order of the error is preserved by the domain trans-

formation technique.
3.2.2 Numerical results for the PCG method

Now we want to study the number of CG-iterations needed to solve the linear
system associated with the two-dimensional test problem described above. A
vector €, with zeroes is used as the initial guess for the CG-iterations, and
as stopping criterion we have used ||b — A&.||2/||b — A&yll2 < o, where o is

the prescribed accuracy. We denote by mo and mps the number of iterations

13



1% — &lla,oo [ — Zlla,2
a
[£()]] 00 1£)]la.2
m(z) =/20 2.19495e-02 1.46557e-02
” /40 4.64268e-03 2.241 3.95751e-03 1.889
” /60 2.07548e-03 1.986 1.81234e-03 1.926
” /80 1.16071e-03 2.020 1.03679e-03 1.941
n2(z) /20 6.78302e-04 6.55385e-04
” /40 1.67616e-04 2.017 1.66366e-04 1.978
” /60 7.57982e-05 1.957 7.43733e-05 1.986
” /80 4.35374e-05 1.927  4.20004e-05 1.986
na(z) /20 8.53511e-03 1.16352e-02
” /40 2.19907e-03 1.957 3.07286e-03 1.921
” /60 9.85738e-04 1.979 1.38888e-03 1.959
” /80 5.55442e-04 1.994 7.87622e-04 1.972

Table 2: Numerical results for the domain transformation technique for solving
the 2D Laplace equation with prescribed surface shapes 11, 2 and ns.

used by the optimal PCG-FFT method and the standard PCG-MILU method,
respectively. Tables 3-5 list these numbers for different sizes of the discrete
test problem associated with the three stationary water surface functions. We
have also estimated « in an assumed relation between mjas and the number of

unknowns N, mpr ~ O(N®), by comparing two subsequent experiments.

o=1.0e-04 0=1.0e-06 0=1.0e-08 o0=1.0e-10

N mo | my o |mo | my « mo | my o mo | my o
332 8 15 13 | 20 19 | 25 24 | 31

652 8 20 0.212 | 13 | 28 0.248 | 19 | 36 0.269 | 24 | 45 0.275
1292 7 |26 0.191 | 13 | 39 0.242 | 18 | 53 0.282 | 24 | 66 0.279
2572 7 |35 0.216 | 12 | 55 0.249 | 18 | 74 0.242 | 23 | 95 0.264
5132 7 |46 0.198 | 11 | 76 0.234 | 17 |105 0.253 | 23 (136 0.260
10252 8 60 0.192 | 11 |104 0.227 | 17 (149 0.253 | 22 [195 0.260

Table 3: The number of CG-iterations needed to solve our model problem with
surface elevation n = ;.

From Tables 3-5 we observe that the preconditioner based on (23) is prefer-
able to MILU preconditioning, because the number of CG-iterations mo needed
for achieving convergence is independent of /N, whereas mj; grows with /V at the
rate a = 0.25. However, the number of CG-iterations needed by the PCG-FFT

method increases as the waves get steeper, cf. Table 5.
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oc=1.0e-04 0c=1.0e-06 0c=1.0e-08 oc=1.0e-10

N mo | my o mo | my o |mo | my « mo | my o
332 8 13 12 | 18 16 | 23 21 | 28

652 7 16 0.153 | 12 | 25 0.242 | 17 | 32 0.244 | 22 | 40 0.263
1272 7 122 0.232 ) 12 | 33 0.203 | 17 | 45 0.249 | 22 | 57 0.258
2572 7 128 0.231 | 12 | 46 0.241 | 17 | 64 0.256 | 22 | 83 0.273
5132 7 135 0.161 | 12 | 63 0.227 | 17 | 90 0.247 | 22 |118 0.255
10252 7 |46 0.197 | 12 | 87 0.233 | 17 |129 0.260 | 22 |174 0.281

Table 4: The number of CG-iterations needed to solve our model problem with
surface elevation n = n2.

oc=1.0e-04 0=1.0e-06 0=1.0e-08 oc=1.0e-10
N mo | my o mo | my o |mo | my o mo | my o
332 17 19 29 | 13 41 | 17 52 | 23

652 18 | 11 0.148 | 31 | 19 0.280 | 46 | 25 0.285 | 60 | 33 0.266
1272 | 18 | 15 0.226 | 32 | 25 0.200 | 48 | 35 0.245 | 66 | 46 0.242
2572 | 16 | 19 0.172 | 31 | 36 0.265 | 48 | 52 0.287 | 67 | 67 0.273
5132 | 16 | 25 0.199 | 29 | 53 0.280 | 47 | 77 0.284 | 66 | 99 0.282
10252 | 16 | 32 0.178 | 29 | 74 0.241 | 45 [112 0.271 | 64 (153 0.315

Table 5: The number of CG-iterations needed to solve our model problem with
surface elevation = ns.

4 The dynamic problem

The previous section dealt with the numerical solution of the Laplace equation
at a specific time level. Now we describe the method for solving the evolution
equations for n and F, i.e. equations (16) and (17). Inside the time interval
[0, T7, the numerical solution is sought at a finite number of time levels 5 such
that 0 = fg < t1 < ty...< ts =T. Weintroduce Aty such that At =ty —t,_1.
When the computational domain is of rectangular shape, it is convenient to
solve (16)-(20) by a finite difference method. The details of this method will
now be listed for the two-dimensional case, with straightforward extensions to
the fully three-dimensional problem. Let the computational domain [0, L] x
[-H,0] be partitioned into (n; — 1) and (n, — 1) subintervals in the z- and
z-directions, respectively. We want to compute the approximations of ¢(z, z,1)
and 7n(z,t) together with F(z,t) and G(xz,t) at discrete time instants at points

in the dynamic, physical domain which are mapped from the corresponding grid
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points in the computational domain,

77? ~ n(rivtlﬂ)v (ka) € [lvnx] X [07 S]a
Ff ~ F(xi,t), (i,k)€[l,n,]x[0,S9],
Gt~ Gleot), (k)€ [1ng x [0, 5],
Soij ~ W(Iiazijatk)a (Zajak) € [1777'1‘] X [an] X [035]3
1—1 _ j—1
2 = L. 7. = 4+ H)-H.
v ng—1" “ij nz—l(m +H)

4.1 Discretization of surface conditions

For the equations (16) and (17), we apply centered differences of the Leap-frog
type in time. Using a discrete spatial difference operator D to be defined below,

the discrete surface conditions can be written

it = 0T = (At + Aty) [DEFD = (14 (D)) GE ]
_1 Atpyr + At . . .
Fft = BT SRR [(DFF) - (L4 (D)) (G + 200

for k = 1,...,S. Here, Dy ~ ny(z;,t;) and DFF ~ F,(z;,t5). The values n}
and F}' are found using the initial conditions (19)-(20) and a simple first-order

difference approximation

n =
Al
Fl_ FO

1 2

Aty

=0 = 5 =77,
=—gn} = F'=-Atign;.

The algorithm for a two-dimensional fully nonlinear wave simulation can then

be written as follows.

1. Evaluate the actual initial conditions (1 < i < ng): 70 = n%(z;), FP =
GY =0.

2. While t; < T carry out the following steps for £k =0, 1,...:

(a) Compute Dnf and DFF as the approximations of n,(z;,?;) and
Fp(zi,tg) for 2<i<ny — 1.

(b) If (k = 0) then set n} =0, 1 <i < ng, else compute nf+* according
to the relation (1 < i < ng):

mitt =i = (Ategr + Aty) [DFianf - (1+ (an)Q)Gf] .
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(c) If (k = 0) then set F! = —At1gn?, 1 < i < ng, else compute Ff"'l
according to the relation (1 < i< ngy):

Atpy1 + Aty

FFtl — pRt
i i 9

[(DFEY = (14 (Dul))(GE)? + 290t

(d) Solve the Laplace equation in the water volume by the proposed

domain transformation technique and the domain imbedding method.
(e) Compute GF*' (1 <i < n,) by
GHl = n, —1 (3K +1 E+1 ST
; .

= o B et e
2(775?+1+H) My ma—1 ML—2

Remarks.

1. The proposed algorithm is explicit. Formally, the order of accuracy in
time is O(At?) for constant At, even though the order of the first step is
O(At). The spatial order of the scheme is dictated by the choice of D.

2. At each time step, during the solution of the Laplace equation, the velocity
potential from the previous time step is used as start vector for the PCG

method.

3. The Neumann boundary conditions at the solid boundaries = 0 and

x = L imply that Dnf = Dnﬁm =DFf = DF,’L“I =0.

4. Dnf and DFf (2 < i < ny — 1) should be the approximation of the
first-order derivatives with respect to z on interior grid points at the free
surface. The simplest way of calculating them is by the second order

centered finite difference, like

K3

DF} = (Fk+1 - Fz'k—1)/2A337 (29)

with the exception of grid points located at the boundary of the obstacle.
However, if Qg = () and the computational domain is of rectangular shape,
cubic spline interpolations of discrete F¥ and n¥ can be used to calculate
Dnf and DFF. Numerical experiments indicate that both accuracy and
stability can be enhanced compared with the centered difference (29). In
this way, we may achieve better accuracy at a negligible cost since the
matrices associated with the spline interpolations can be computed in a
factored form once and for all. Tt is of course also possible to use the finite

element representation to compute D.
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5. G* can be computed by the simple form

n, —1
Gf = m(ﬁofnz - Sof,nz—l)a

but in order to achieve second-order accuracy, we employ the formula given

in step 2(e) of the numerical algorithm.

6. The numerical algorithm is only conditionally stable. In the fully nonlinear
case, it is difficult to derive a theoretical stability condition, and A¢ must
be determined on an experimental basis. In simpler problems a constant
At is sufficient, while in more challenging problems we apply a variable
At, where the number of PCG iterations is used as an indicator whether
At is too large or too small. If the number of iterations is below a lower
critical limit, say two, the size of At is doubled, while At is halved if
the number of iterations is larger than an upper critical limit, say ten.

Smoothing of Ff and 5f by standard algorithms can also be necessary.

5 Numerical experiments; 2D waves

The proposed numerical algorithm is first evaluated in cases of two-dimensional
wave motion. The length of the domain in the z-direction is L. Linear elements
are used in the finite element discretization. Cubic spline interpolations are
applied in the calculation of Dnf and DFF. As stopping criterion for the PCG-
FFT method we employ ||r.,|l2 < 107%, where r,,, = b — Ag,, is the residual
in iteration number m. This stopping criterion has shown to be appropriate for

the current and later numerical experiments.

5.1 Shallow water

Consider long waves in shallow water with the following parameters,

729 [ 2N2 (2 — L\ 1
L=100, H=5, ’70(1‘):?[(5) <T> ‘m]'

Due to the absence of an analytical solution for the current example, we compare
our numerical solution with the results of a spline method developed by Mehlum
[17]. The spline computations which define a reference solution were performed

on a very fine mesh. We study the convergence of the numerical solution with
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respect to this reference solution under refinement of the grid. In particular,
the surface elevation n(z,¢) and velocity potential at the surface F(z,t) are
considered. Numerical solutions obtained by the new algorithm are denoted by
7 and ﬁ, while solutions by Mehlum’s spline method are denoted by 7(*) and

F©). Both the discrete Lo-norm and the discrete I1-norm are utilized, where

1 < 1 <
lglla. = o Z(gj)Q, lglla, = o Z l9;1,
j=1 j=1
with g being a discrete function with function values g;, j =1,...,n.
N e O T TR, R,
||77(S) ||77(S) ||F(S) ||F(S)
ALl A ALl A2

9x5  0.50 1.181e-01  1.351e-01  5.087e-02 5.660e-02
17%x9 0.25 2.526e-02  3.082e-02  1.223e-02 1.315e-02
33x 17 0.10 7.884e-03  9.170e-03  3.163e-03 3.440e-03
65 x 33 0.05 2.109e-03  2.395e-03  8.134e-04 8.836e-04
129 x 65 0.025 5.704e-04  6.459e-04  2.142e-04 2.352e-04

Table 6: The 2D shallow water experiment; a comparison of n and F' computed
by the new algorithm and Mehlum’s spline method at ¢ = 5.

For moderate sizes of constant time steps (0.05 < At < 0.25), the number
of PCG iterations required for solving the corresponding Laplace equation is
at most 5 regardless of the grid size. The number decreases for smaller time
steps. From Table 6 we observe rapid convergence of the solution with our new
algorithm towards the reference solution computed by Mehlum’s spline method.
In fact, errors less than the line thickness in the plot are easily achieved even

on a coarse grid, see Figures 2 and 3.

5.2 Deep water

We now consider waves whose typical wavelength is much less than the depth

of the water tank. In the experiments, the parameters are as follows.
0 . T . 27
L=160, H =70, 5 (z)=6.5cos (Ir) + 5.5 cos %)

Again we note that the solution computed by the proposed algorithm con-
verges towards the solution obtained by Mehlums spline method, cf. Table 7.
The solution of the Laplace equation at each time level requires 4-6 iterations

of the PCG-FFT method independent of the number of spatial grid points.
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Figure 2: The 2D shallow water experiment; surface elevation at ¢ = 5, applying
N =9 x 5 and At = 0.5. The solid line is the result from the new algorithm
and the dashed line is the result from Mehlum’s spline method.

O O i O i
NA LY T, TP, PO,
9x 11 0.50  9.607e-02 7.862e-02 5.269e-02 4.969e-02
17x 21  0.25 2.578e-02 2.233e-02 1.627e-02 1.493e-02
33 x41 0.10 7.436e-03 6.817e-03 5.677e-03 5.186e-03
65 x 81 0.0 2.601e-03 2.485e-03 2.981e-03 2.917e-03

A,2 A,2

Table 7: The 2D deep water experiment; a comparison of  and F computed
by the new algorithm and Mehlum’s spline method at ¢ = 10.

5.3 Submerged obstacle in intermediate water

In this third, two-dimensional, test problem we consider waves in water of in-
termediate depth. The solution domain and the initial conditions are the same
as in the deep water experiment studied above, except for the depth, which is
40 in this case (i.e. H = 40). In order to make the problem more challenging,
we consider a water tank containing a box-shaped obstacle. This obstacle is
submerged with its position at (z, z) € [90, 100] x [—30, —15]. Figure 4 sketches
the submerged obstacle and the initial surface shape.

We solve this problem by applying the domain imbedding procedure dis-
cussed in section 2.3. More precisely, the obstacle is represented by a negligible
artificial “permeability”, putting ¢ = 1072 in (8). Figure 5 shows the water
surface elevation at time ¢t = 4.8 and ¢ = 21.2 seconds. The influence of the
obstacle on the wave motion can easily be observed. These numerical results

were confirmed by applying different mesh sizes and observing convergence of
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Figure 3: The 2D shallow water experiment; surface elevation at ¢ = 5, applying
N =17 x 9 and At = 0.25. The solid line is the result from the new algorithm
and the dashed line is the result from Mehlum’s spline method.

the method under mesh refinements.
For this test problem, we also calculate the kinetic energy Ej and the po-
tential energy F, due to the wave motion, where
Ey E/L /77 L Vol dedz, E, E/L 9+ H)2de - 2 L2
e=0Jz=—m 2 z=0 2 (30)
The constant p is the water density. The total energy F = FEj + FE, is also
studied as a function of time. We depict in Figure 6 the computational results
obtained on a 257 x 129 mesh with A¢ = 1/80. The figure shows that the total
energy is nearly constant. Table 8 confirms that the maximum deviation of the

computed total energy from the exact value is reduced under mesh refinements.

Mesh 33x 17| 65 x33 | 129 x 65 | 257 x 129
Al /10 | 1/20 | 1740 1780
Max deviation | 6.45% 3.57% 1.39% 0.56%

Table 8: The table shows, for the test problem studied in section 5.3, maximum
deviation of the computed total energy, obtained on different meshes, from the
exact value.

6 Numerical experiments; 3D waves
6.1 The wave motion in a water tank

We consider waves in a 3D water tank without any internal obstacle. The

parameter for defining the three-dimensional computational domain are Ly =
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Figure 4: The figure shows the initial shape of the water surface for the problem
studied in section 5.3. The rectangle represents a submerged obstacle.

Ly = 80 and H = 50, whereas the initial condition is

0(z,y) = (- Tz 2me _ ™y Zry
n(z,y) = < 0.9cos<L1> + cos ( T )) (1 0.9 cos <L2> + cos ( T ))

Trilinear elements are used in the finite element discretization. Again we

compare the numerical solution from the new algorithm with the solution com-
puted by Mehlum’s spline method on a very fine grid. The information about
the grid sizes and the errors can be found in Table 9. The PCG-FFT method
converges within 5-7 iterations at each time step, using the same stopping cri-

terion as in the 2D experiments.

=y a7, P77,
NoATOLT L, FL, POl
HxHx6 0.50 2.626e-01 2.458e-01 3.427e-01 3.872e-01
O9x 9x11 0.25 9.761e-02 8.744e-02 1.027e-01 1.226e-01
17x 17 x 21 0.10 3.409e-02  2.998e-02 3.221e-02 4.361e-02
33 x 33 x41 0.05 1.100e-02 9.561e-03 1.256e-02 2.696e-02

Table 9: The wave motion in a water tank; a comparison of  and F' computed
by the new algorithm and Mehlum’s spline method at time ¢ = 4.
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6.2 A water tank with an obstacle submerged under water

A 2D cross section of the geometry of the 3D water tank considered in this
experiment is depicted in Figure 7. More precisely, L1 = 24, Ly, = 12, H = 6
and Qs = [18,21] x [0, 3] x [—6, —3] represents a box-shaped obstacle located at
the bottom of the tank.

The function n° describing the water surface at time ¢t = 0 is given by

0(1‘ ) = cos ™ + cos 2z
n YY) = I, I, .

Figures 8 and 9 show the numerical results obtained on various meshes by

applying suitable time steps. As in section 5.3 we apply the domain imbedding
procedure, putting € = 10~ '2. Again our algorithm produces reasonable results
and convergence of the method can be observed as the mesh sizes are reduced.

We also study for this test problem the total energy F, the kinetic energy
Ej and the potential energy E,, whose definitions are similar to that in (30),
as functions of time. Some numerical results are depicted in Figure 10. A slight
dip in the total energy around ¢ = 4 is observed. The energy loss might be
explained by the fact that the wave is very close to breaking around ¢ = 4.
Table 10 confirms that the maximum deviation of the computed total energy

from the exact value is reduced under mesh refinements.

Mesh 17Tx9x21 | 33x17x41 | 65 x 33 x 81
Y 1/10 1/20 1/40
Max deviation 18.72% 6.84% 2.34%

Table 10: The table shows, for the test problem studied in section 6.2, maximum
deviation of the computed total energy, obtained on different meshes, from the
exact value.

6.3 A water tank containing a surface piercing obstacle

We end this presentation by a numerical experiment with water waves in a
tank containing a vertical cylinder with square base, i.e., the physical domain
is on the form (3) with Qg being a square located close to the center of the
tank. The horizontal section of the geometry to be considered is depicted in
Figure 11. This experiment is partially representative for simulating wave forces

on a marine installation. However, real-world applications usually involve more
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complicated geometries. As mentioned earlier in this paper, a domain imbedding
approach is introduced to treat the internal obstacle. In the general case, the
geometry of the obstacle will not intersect the underlying uniform grid of the
computational domain along the grid lines. This is of no principal difficulty, but
in the numerical experiments we have decided to work with a geometry that
coincides with the grid lines such that errors from intersections are eliminated.

We set Q = [0,200] x [—60,60] x [-70,0] and Qg = [125, 150] x [—15, 15].

The initial condition is on the form

z—35\" (4(x — 35)
—0.54564 0<x<:
(e, ) = 9( = )( = +5> 0.54564 0 < x < 35,

—0.54564 otherwise.

Because of the symmetry in the y-direction, it suffices to solve the water wave
system in half of the original region, i.e., for y > 0. At each time step, equations
(16) and (17) are solved in the domain Q.,\Qs.

The domain imbedding parameter was chosen to be ¢ = 1072, In this 3D
case the discretized Laplacian (28) was solved by a PCG-MG method. Figure
12 shows that the numerical solutions converge under refinement of the grid.
For suitable time steps (e.g. At = 0.05,0.1) we observed that the PCG method
gain expected accuracy in less than 10 iterations per time step. The number
of CG-iterations needed to solve the problem was independent of the domain
imbedding parameter ¢ and the number of spatial grid points. Further details
of the domain imbedding procedure and the influence of € can be found in [18§]

and [7].

7 Conclusions

We have developed a new numerical scheme for the fully three-dimensional, non-
linear equations modelling water waves. The key feature of the method is that
regridding of the computational domain at each time step is avoided, submerged
obstacles are easily handled, and optimal convergence of the conjugate gradi-
ent method is achieved. Numerical comparisons with another carefully tested
scheme show that the solutions generated by the two schemes seem to converge
towards the same solution as the mesh sizes are reduced. In more challeng-
ing test problems we have indicated convergence of the method as the mesh is

refined. We have also studied time series of the total energy.
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The scope of the present paper has been to present the method and indicate
its potential for water wave problems. However, there are numerous subjects for
further studies and developments. Obstacles of complcated geometrical shape,
intersecting the free surface, demand more flexible solution methods, like the
finite element method, for the equations at the surface. Moving bodies are at
present beyond the scope of the method. When it comes to verification of our
numerical approach, one should conduct a wide range of experiments for which
analytical insight is available. Extreme wave conditions, close to the point of
breaking, is of particular interest, and the extensive work of Longuet-Higgins, see
e.g. [16] and the references therein, contains a wealth of approximate, analytical
theories. Careful numerical studies of steep waves represent a challenging test
on the quality of the numerical approach as well as a tool for investigating the

validity of the approximate, hydrodynamical theories.
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Figure 5: The surface elevation at time ¢ = 4.8 and ¢ = 21.2 seconds for the test
problem studied in section 5.3. The 4+ and dotted ”lines” represent numerical
results obtained on 33x 17 and 65x 33 meshes by applying time steps At = 1/10s
and At = 1/20s, respectively. By putting At = 1/40s and applying a 129 x 65
mesh we computed the results illustrated by the dashed lines. Finally, the solid
line represents the results computed on a 257 x 129 mesh with At = 1/80s.
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Figure 6: The figure shows, for the test problem studied in section 5.3, the
kinetic energy Ej (the dashed-dotted line), the potential energy E, (the dashed

line) and the total energy E = Ej + E, (the solid line) as functions of time.
The data are obtained from a 257 x 129 mesh with A¢ = 1/80s.
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Figure 7: Top view of a water tank containing an obstacle Qg.
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Figure 8: Surface elevation at different time levels; (a) t = 0s, (b) ¢t = 3.6s, (c)
t = 6.9s, (d) t = 10.8s. These results were computed on a 65 x 33 x 81 mesh

with time step At = 1/40s.
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Figure 9: Surface elevation as a function of time ¢ at specific locations. The plots
show the elevation at (18,3) and (21, 3), respectively. Dotted lines represent
solutions obtained on a 17 x 9 x 21 grid with At = 1/10s; Dashed lines represent
solutions obtained on a 33 x 17 x 41 grid with At = 1/20s, while solid lines are
solutions from a 65 x 33 x 81 grid with At = 1/40s.
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Figure 10: The figure shows for the test problem studied in section 6.2 the
kinetic energy Ej (the dashed-dotted line), the potential energy E, (the dashed
line) and the total energy E = Ej + E, (the solid line) as functions of time.
The data are obtained from a 65 x 33 x 81 mesh with At = 1/40s.
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Figure 11: Top view of a water tank containing a square obstacle Qg.



surface elevation

0 2 4 6 8 10 12 14 16
elapsed time

Figure 12: A 3D water tank containing an obstacle; Numerical solutions of the
surface elevation at (z = 125,y = 22.5) for 0 < ¢ < 17. The solid line is the
result from the numerical simulation with n, = 129, n, = 33, n, = 49 and
At = 0.05; The dashed line is the result from the numerical simulation with
ne = 65, ny = 17, n, = 25 and At = 0.1; The dash-dotted line is the result
from the numerical simulation with n, = 33, ny, =9, n, = 13 and At = 0.1.
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