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Abstract

This paper presents a new technique for computing the effective
permeability on a coarse scale. It is assumed that the permeability is
given at a fine scale and that it is necessary to reduce the number of
blocks in the reservoir model. Traditional upscaling methods depend
on local boundary conditions. It is well known that this approach
often leads to ill-posed problems. We propose to compute a coarse
scale permeability field that minimise the error, measured in a global
norm, in the velocity and pressure fields. This leads to a well posed
problem for a large number of reservoirs. We present several algorithms
for finding the effective permeability values. It turns out that these
algorithms are not significantly more computational expensive than
traditional local methods. Finally, the method is illustrated by several
numerical experiments.

1 Introduction

The last two decades it has become usual to model the permeability in a
reservoir at a very fine scale, a scale much finer than it is possible to use
in a reservoir simulator. The permeability is modelled at this scale because
permeability is usually measured at a 0.1 -1 meter scale and it is easier
to describe the geology at this scale. In order to bound the number of
blocks in the reservoir simulator the block dimension is typically 10-100m
vertically and 1-5 m horizontally. The fine scale description of the reservoir
is usually generated by stochastic modelling, see [5]. It is then necessary to
find upscaled permeability values for each coarse grid block.

Traditional upscaling methods compute block effective values of the per-
meability based on local boundary conditions, cf. e.g. [16] and [6]. If such
effective properties exist!, these methods give good estimates. In some cases

1 The effective permeability exists if it is possible to define a value of the permeability on
the coarse scale that gives the same flow as a fine scale simulation for all sets of boundary
conditions.
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an effective value does not exist, and the computations may lead to erroneous
or arbitrary values, see [2].

In this paper a different approach is studied. The upscaling problem is
formulated as a minimisation problem. More precisely, the upscaled perme-
ability is defined as the permeability that minimises the difference between
the pressure and the velocity fields generated by the fine and coarse scale
pressure equations, respectively. Several norms, for measuring this differ-
ence, is discussed. By applying this approach, it is not necessary to make
any assumptions on local boundary conditions (which in some cases will
introduce ill-posed problems). Upscaling techniques based on minimising
global norms are usually well-posed and leads to stable algorithms. How-
ever, this approach introduces some new technical problems; The upscaled
permeability values may depend on the solution of the fine scale pressure
equation, and minimisation problems are usually harder to solve than the
linear equation systems arising in local upscaling methods.

Three different norms for comparing the difference in the pressure and
velocity for a fine and coarse scale field is discussed. If the energy norm or
inverse energy norm (the WOLS scheme, see [12]) is applied, it turns out
that it is not necessary to solve the fine scale pressure equation in order to
determine the coarse scale permeabilities. Promising results for the WOLS
method are reported in [12]. In particular, this technique provides accurate
representations of thin barriers. However, for some reservoirs these two
methods fail to “preserve” the flow pattern on the coarse scale, cf. section
7. In fact, in some cases these techniques have many of the same properties
as methods based on arithmetic and harmonic averaging of the permeability
field.

Assume that the Ly norm is used to measure the difference between the
fine and coarse scale velocity and pressure fields. Then it is necessary to
compute the fine scale pressure in order to solve the associated minimisa-
tion problem. This leads to a large linear equation system where the number
of unknowns is the number of fine scale blocks. However, the most efficient
linear equation solvers today use computer time proportional to the number
of unknowns, see e.g. [9] or [4]. Recall that if local upscaling techniques are
applied then a fine scale problem is solved on each coarse block. Thus, the
computing time needed for solving one fine scale pressure equation, defined
on the entire reservoir, is comparable to the time needed by local upscal-
ing methods for solving all of the fine scale problems on the coarse blocks.
Furthermore, it turns out that the associated minimisation problem can be
solved very efficiently, see section 6. Hence, we conclude that upscaling
techniques based on minimising the error in the global Lo norms are not
significantly more computational expensive than local methods.

The Lo norm approach to upscaling seems to have promising properties.
More precisely, in most coarse grid blocks the total mass flux over each
coarse grid block interface is preserved. Moreover, we obtain very accurate
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flow rates in the wells. Finally, the pressure in most coarse blocks is simply
the average pressure in the fine scale blocks inside the coarse grid block. In
section 8 we present several numerical experiments illustrating the properties
of this new upscaling method.

We introduce three algorithms for computing the transmissibilities of the
coarse grid block interfaces that solves the Ly minimisation problem. Trans-
missibilities give better resolution than permeabilities, and some problems
related to non-rectangular blocks are avoided. If an effective permeabil-
ity exists, the Ly minimisation problem gives the same transmissibilities as
traditional local upscaling methods.

In applications of our method, it is necessary to solve the fine scale
pressure equation each time the rates or pressure in the reservoir changes
considerably. This pressure field is used to compute the upscaled transmis-
sibilities for the coarse grid blocks. These transmissibilities are applied in
the following time steps in the reservoir simulator. In the time steps where
the fine scale permeability solution is computed, the coarse scale pressure
and velocity fields give exactly the same total flow rates as the fine scale
solution. If the reservoir performance is stable, the upscaled permeabilities
should also give accurate flow patterns in the following time steps, provided
that the main flow directions are approximately unchanged.

The method is expected to be applicable for reservoirs where traditional
local upscaling techniques fail. This is the case in reservoirs with high con-
trasts and barriers or high permeable zones at the size of the coarse scale
grid blocks. It has also been observed that local upscaling methods quite
often fail to handle the well blocks properly. In such cases, global methods
seems to provide an interesting and accurate alternative, see section 8.

If an effective non-diagonal permeability tensor exists, transmissibility
cross terms should be used. We described an algorithm for calculating these
terms, cf. section 6.3. In this paper we focus on single phase, incompressible
flow. Like most upscaling techniques it may also be generalised to multi-
phase, compressible flow. This issue is discussed in section 6.4.

2 Local methods

Traditional upscaling methods of permeability make assumptions on local
boundary conditions, see e.g [16] and [6]. These methods work well if the
variation of the saturations and velocities are limited on the fine grid block
scale. If this is not the case, local methods may fail. In general, the error in
the estimates are large if the assumed boundary conditions are far from the
actual boundary conditions in the reservoir. Use of skin and non-diagonal
tensors may reduce this effect, but the problem is still significant.

Effective properties are only well-defined if the separation of scale con-
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dition is satisfied, see [7];
lk’ lS < L < Lk7 LSa Lp

where ly,ls, L, Ly, Lg, L, are the length scales of the small scale variation in
the media, of the small scale variation in the saturations, the grid dimension,
of the large scale variation in the media, of the large scale variation in
the saturation and pressure, respectively. If this condition is not satisfied,
the flow properties depend on the boundary conditions. Hence upscaling
methods based on one set of boundary condition can not be expected to
work well under other boundary conditions. This is the case if there are
large changes in the pressure gradients (for example close to the wells), or
large contrasts in the reservoir properties at the scale of the grid blocks.
Figure 1 shows some typical blocks where local upscaling methods may fail
to define an acceptable upscaled permeability field.

"

wel/ channels barriers

Figure 1: The figure shows some typical blocks where local upscaling meth-
ods may fail to define an acceptable upscaled permeability field.

3 Global norms

Assume that a fine scale description of a reservoir kp, (permeability) is avail-
able and that this description has too many grid blocks to be used in a
reservoir simulator. The equation

div(k,Vpp) =0 (1)

with a certain set of reservoir boundary conditions gives the steady state
pressure pp and velocity v, = —kpVpp. In this paper a set of reservoir
boundary conditions is defined as a specification of the pressure or rates in
the wells and a specification of the fluxes (in or out) of the reservoir. The
challenge is to find a coarse scale description of the permeability kg such
that the corresponding coarse scale pressure py, defined by

div(kyVpu) =0 (2)

with the same reservoir boundary conditions as in (1), and velocity vy =
—kuyVpn, are good approximations of p, and vy, respectively. Hence, we
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want to find ky that minimises ||p, — pu(kr)| and ||vp, — va(kn)| (we
write pg (kp) and vy (kg) to emphasize that the coarse pressure and coarse
velocity fields are functions of kz). In general, we may expect kg to depend
on both the fine scale pressure p, and on the fine scale velocity vy,.

The steady state reservoir boundary conditions observed at a particular
time step will usually not be satisfied at later time steps. The rates in
the wells and the saturation distribution change with time in multiphase
reservoirs. Hence, kg becomes time dependent. However, if the reservoir
model is well-posed, small changes in the boundary condition will only lead
to small changes in the coarse scale permeabilities. It seems reasonable to
only update kg if large changes in the rates or large changes in the saturation
has been observed. This issue is discussed in section 6.4.

Clearly, we can use different norms to measure the errors ||py, — pg|| and
llv, — vg||, introduced in the pressure field and in the velocity field by the
upscaling process. The coarse scale permeabilities we compute will depend
heavily on the norm we choose. In this paper three different norms are
discussed: the energy norm, the inverse energy norm (the WOLS-scheme)
and the Ls norm. But, for reasons presented in section 7, we will emphasize
on the Ly norm.

4 Energy norm

In theoretical studies of the pressure equation, or more general, in studies
of second order elliptic differential equations, mathematical properties are
frequently stated in terms of the so-called energy norm, cf. e.g. [10] and [3].
If we apply this norm, our minimisation problem takes the form; Find kg
and py = py(ky) such that (2) is satisfied and

lpn — pull% = /QV(Ph —pu)knV(ph — pu) dz

is as small as possible. Here, €2 represents the domain of the reservoir in
question. The finite element method, see [15] or [3], minimises the error in
this energy norm. Applying the finite element method, defined on the coarse
grid, to the pressure equation leads to a linear equation system where the
discretized coarse pressure py is the unknown. The coefficients in this linear
equation system are given by integrals on the form

/ VoiknV; dz,
Q

where {¢;} are test functions with local support. Hence, the solution kg
of the energy norm minimisation problem may be found by simple integrals
of kp multiplied by the test functions. Hence, it is easy to find the coarse
permeabilities in this case, but the estimates are close to the arithmetic mean
of the permeability. This estimate does not honour thin barriers sufficiently
and will overestimate the flow, see section 7.

Norwegian Computing Center, Box 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



6 L. Holden and B. F. Nielsen.

5 Inverse energy norm (the WOLS scheme)

This method was introduced by Nielsen and Tveito in [12], and is defined
as follows; Find ky and py = py(ky) such that (2) is satisfied and

lon = val3-s = [ (00 = o)k (0n = o) da 0

is as small as possible. Since the inverse k;l of the fine scale permeability is
used as a weight function the method is referred to as the weighted output
least squares (WOLS) method. As for the energy norm, discussed above, it
turns out that it is not necessary to solve the fine scale pressure equation
(1) in order to minimise the functional given in (3). However, it is necessary
to solve a minimisation problem defined on the coarse scale. This makes the
method computationally more expensive than the energy norm minimisation
algorithm. If the number of fine scale blocks is considerably larger than the
number of coarse grid blocks, then this method will be considerably faster
than local upscaling methods. Some promising results are presented in [12].
In particular, the scheme provides accurate representations on the coarse
scale of low permeable zones acting as barriers. However, as illustrated in
section 7, low permeability blocks that do not function as barriers may have
too large effect on the estimates. The estimates are in some cases close to
the harmonic mean of the fine scale permeability and may underestimate
the flow.

6 L; norm (the OLS scheme)

Clearly, on a coarse grid it is not possible to reconstruct the fine scale pres-
sure py, exactly. For each coarse grid block i, let pi denote the average of
the corresponding fine scale pressure pp, and for each coarse grid block side
i, 7, let ¢%7 denote the sum of the corresponding fine scale mass flux, i.e. ¢-’
represents the total mass flux across the interface i,j. A reasonable ambi-
tion on the coarse grid for an accurate upscaling method should be that the
pressure in each coarse block equals p, and that the flux over each coarse
grid block interfaces equals g,.
It turns out that minimising the Ly norms

Ipe — 2l = [ (o —pi)* da (@

and
Jon = vall, = [ ((n = vm) -)? do (5)

give solutions that are close to p, = {p.}; and ¢, = {¢"}; ;, respectively>.
Here, I" represents the union of all the boundariers of the coarse scale grid

The fluxes {g}*’ }; ; are uniquely determined by the velocities {v%’}; ; at the interfaces
and the grid parameters, see equation (9).
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blocks, and n is the outwards directed normal vector (of unit length) to
these boundaries.

In a finite difference reservoir simulator the permeabilities are only used
for calculating the transmissibilities® T, which in turn are used in the flow
calculations. It is partly unstable to compute kg from the transmissibilities.
Typically, these instabilities lead to a “chess board pattern” for kp instead
of decreasing the error. In addition, transmissibilities give better resolution
than permeabilities. Moreover, by computing the transmissibilities directly,
it is easier to handle irregular grids. Thus, we will focus on computing
transmissibilities instead of permeabilities in the algorithms presented below.

In order to reproduce p. and g%/ on the coarse grid, the transmissibilities
must satisfy the equation

Ty (o — p) = 47, (6)

where 7 and j are neighbour blocks and T;I’j represents the transmissibility
of the associated block interface. The reason for this is; The discretized
pressure equation (2) can be written on the form

> (0 — i) Ty = by (7)

J

where the right hand side b%;, = 0, except in blocks containing a well(s) or
blocks at the border of the reservoir (where there might be an in or out flux
of mass). Equation (7) expresses mass conservation since the mass flux in
and out of block 7 adds up to zero. Clearly, since the mass is conserved on
the fine scale and g%/ is the total mass flux across the interface, it follows
that if THJ satisfies (6), for all 4, j, then (7) must hold. In fact, it is sufficient
that the right hand side b%; satisfies

= gl (8)
;

for all 4. That is, if (6) and (8) hold then p and g% are reproduced on the
coarse grid.
The mass flux from block ¢ to block j is

qz :AZJ'UH n[}]:TH’](p _pH) (9)

where A; ; represents the area of the block interface between blocks 7 and
J- Note that there is a linear relationship between the mass flux ¢ and the
velocity v - n. Hence, minimizing the Lo norm, with respect to {T7’}, in
either the fluxes or velocities gives the same solution.

3The transmissibility of an interface, in a regular grid, is defined as the harmonic
average of the permeability in the two blocks multiplied by the area of the common
interface and divided by the distance between the two grid block centers.
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Even in cases where the fine scale permeability kj, is positive and bounded,
the solution Ty that minimises the two norms (5) and (4) may be negative
or infinite large, see [2]. In applied problems, it seems to be necessary to
find Ty € [Tr,,Ty] that minimises the two Ly norms. A possible choice of
bounds for the transmissibilities could be the local arithmetic/harmonic and
harmonic/arithmetic means of the permeabilities in the two blocks. If an
effective value exists, it will always belong to this interval. It turns out that
it is necessary to use Lg norms in both pressure and velocity in order to get
a unique solution. N

For a given set of admissible transmissibilities Ty = {T}’ }; ;, let py =
pu(TH) denote the solution of the coarse scale pressure equation (7) and let
vy = vy (Th) represent the associated velocity field. Then the Lo minimi-
sation problem can be formulated as follows;

Ly minimisation problem N -

For each pair i,j of neighbouring coarse grid blocks find T} € [Ti’j,T[Z]’j]
such that ||vy — vy (Ty)||L, is minimised, and of all solutions that minimise
this functional, minimise |pp, — pr(TH)||1,- In case both functionals are in-
variant for a transmissibility Tyy , set Ty = (TP T )12,

It is trivial to show that the functions p, and ¢,, defined at the beginning
of this section, minimise* the two Lo norms. However, the corresponding
transmissibility defined by

717 = 4’ /(v — P},

cf. equation (6), where the flow ¢/ is from block i to block j, need not
satisfy N N N
TH < TH < T8 (10)

If (10) is satisfied at all block interfaces, then Tj’ = Ty is the solution of
the minimisation problem. If p! = pJ and ¢%/ = 0, then the two norms are
invariant with respect to T%’, and the Ly minimisation solution is T3 =
(TITE) 2.

It is believed that for most reservoirs, and for reasonable bounds Ti’j
and T(ijj , inequality (10) will be satisfied at almost all block interfaces in the
reservoir. The theorem and the algorithms presented in this paper are based
on the principle that the pressure solution py of the minimisation problem
is equal to p, in all blocks, except in a limited neighbourhood to block
interfaces where (10) is not satisfied, see section 6.2. Moreover, the mass
flux g will be equal to ¢, except in parts of some of these neighbourhoods.
We prove that for a certain set of reservoirs the solution of the minimisation
problem satisfies this local property.

*Recall that we can apply (9) to compute vy if g is given, and vice versa.
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In the literature addressing the theory of so called inverse problems, the
solution concept discussed above is frequently applied to solve parameter
identification problems, cf. e.g. [1] or [8]. The approach is referred to as
the output least squares (OLS) method. Therefore, we will refer to the new
upscaling scheme as the OLS method.

6.1 Algorithms

The algorithms are based on first finding the global fine scale pressure py,.
It seems impossible to compute the solution of the Lo minimisation problem
without finding pj first. In local methods, as described in e.g. [16], it is
also necessary to compute local approximations of pj, in order to determine
the upscaled permeability field. However, in the latter case, this is done
for each coarse block separately assuming a local boundary condition. The
most important advantage of the energy norm approach and WOLS scheme,
described in sections 4 and 5, is that this step is avoided.

In this section we present two algorithms for computing the solution of
the Ly minimisation problem presented in the previous section. Algorithm
1 is easy to implement, and determines the exact solution of the problem
for a certain class of reservoirs called A;. In this context a reservoir is de-
fined by a fine scale permeability field kj, a set of coarse blocks and a set
of boundary conditions for the fine scale problem. Outside the set A, the
algorithm gives an approximate solution. Algorithm 2 is more complex to
implement. However, it gives the exact solution for a larger set of reservoirs
Ay D A;. Outside this set, it gives an approximate solution.

Algorithm 1

1. Find the solution p; of the fine scale pressure equation and compute
the associated Darcy velocity vy,.

2. Compute the Lo-projections p, and ¢, of p, and g onto the coarse
grid.

3. For all pairs of neighbour blocks i, j:

(a) 77 == ¢7/ (p} — p}),
where ¢*7 represents the mass flux from block 7 to block j.

(b) Set T} € [T}, Ti] such that |T} — T7| is minimised.

Clearly, algorithm 1 finds the unique minimum of the Ly minimisation
problem if (10) is satisfied for all pairs of neighbours. The set A; is the set
of reservoirs where this condition is satisfied.

The main purpose of Algorithm 2 is to try to minimise the number of
block interfaces at which condition (10) is not satisfied. The basic idea
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behind the algorithm is to make small, and local, changes in the projected
pressure field and update the transmissibilities in an iterative procedure.

More precisely, assume that T} > T7. Then we redefine the transmis-
sibility at this interface by setting

2 ]
T2 - TU .

In addition we assign new pressure values 5. and 5/ to blocks i and j by
requiring that Darcy’s law is fulfilled

@ — T, = g7,

and by assuring that the change in the pressure field is as small as possible,
i.e. by minimising the following functional with respect to p. and p]

(B — p1)* + (B — P})”.
The case Tli J < Tz’j is handled analogously.
Clearly, if the pressure field is changed in this way, then condition (10)
holds at the interface between blocks ¢ and j. However, this approach may
introduce new pressure differences (drops) in the neighbourhood of blocks i

and j such that (10) is violated. Hence, the method must be applied in an
iterative fashion leading to the following algorithm.

Algorithm 2

1. Find the solution pj, of the fine scale pressure equation and compute
the associated Darcy velocity vy,.

2. Compute the Lo-projections p, and g, of pp and g onto the coarse
grid. Set p, = p,.

3. While not convergence do

(a) For all pairs of neighbour blocks 4, j:
i T:= g /(B — B,
where ¢*7 represents the mass flux from block 7 to block j.
ii. Set 757 € [T77,T}] such that |Ty7 — T is minimised.
iii. If T ¢ [T)7, T set

o= 05 i+ L g
p’r . - p’r TZ’J T ’
2
y g
o= P
TQZJ

4. For all pairs of neighbour blocks 1, 5:
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o Set T3 € [TH7,T}] such that [T}’ — T57| is minimised.

In this paper we apply the following stopping criteria in the algorithm
(cf. step 3. in Algorithm 2); Let g(it) represent the number of interfaces, in
iteration number ¢, at which condition (10) is not satisfied. The iteration
process is terminated if the average relative reduction in ¢(it), in the last 10
iterations, is less than 1%.

The number of interfaces at which condition (10) is violated can be
reduced significantly by applying algorithm 2. However, ¢(it) will in most
realistic cases not reach 0 within an acceptable number of iterations. Hence,
step 4. in the algorithm is needed to assure that all the transmissibilities
satisfy their predefined bounds. The set A, introduced above, is simply
defined to be the set of reservoirs for which g(it) reaches 0.

Finally, comparing algorithms 1 and 2, it turns out that the representa-
tion of the flow pattern, and consequently the production/injection rates in
the wells, on the coarse scale is improved significantly by applying Algorithm
2 instead of Algorithm 1, see section 8.

It should also be mentioned that, throughout this paper, we will refer to
both algorithms 1 and 2 as the OLS scheme.

6.2 Properties

In this section it is proved some theoretical properties of the Lo minimi-
sation problem and the algorithms presented in the previous section. The
theoretical properties are proved by introducing Algorithm 3 defined below.
The algorithm is not intended for implementation, it is only a constructive
method to prove the properties of the problem.

Theorem
For a certain class of reservoirs As (fine scale permeability ky, a set of
boundary conditions for the reservoir and coarse grid blocks), there exists
a unique solution of the Lo minimisation problem. The solution of the Lo
minimisation problem satisfies p}I(TH) = pt in all coarse grid blocks, and
q;’[j (Ty) = qﬁ’j on all coarse grid block interfaces except in local neighbour-
hoods around coarse blocks boundaries where (10) is not satisfied. These
neighbourhoods are characterised by pﬁq (Tw) # pfﬂ. In some of the local neigh-
bourhoods q}IJ(TH) = g% is satisfied on all block boundaries while other local
neighbourhoods have qjt’[j(TH) # g+ on some of the grid block boundaries.

Algorithm 1, 2 and 8 give the exact solution of the Lo minimisation
problem for reservoirs in respectively Ay C Ay and Ay C As. The set Ay
is described by the reservoir where (10) is satisfied on all coarse grid block
boundaries. The set Ay is described by the reservoir where q(it) reaches 0.
The set A3 is described as the set of reservoirs where it is possible to remove
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the statement “ AND n(D U{k}) < 3 AND k not member of a set D pre-
vious in the algorithm ” from the algorithm 3 below, without changing the
performance of the algorithm.

In Algorithm 3 it is necessary with some mathematical notation. D is
used to denote a subset of the set of coarse grid blocks. The blocks in the set
D changes during the algorithm. The algorithm needs the following three
functions of the set D: n(D), the number of parallel path in D, p*(D) the
pressure in block i € D and T%/(D) the transmissibility between block 4
and j where i,j € D. p'(D) and T%/(D) are defined as the solution of the
Lo minimisation problem restricted to D. This minimisation is performed
without assuming any boundary condition at the border of D. The set D is
increased until either

T"*(D)(p"(D) — p¥) = ¢;* (11)

for all € D and k ¢ D is satisfied at the border of D or D is so large that
the algorithm only finds an approximate solution of the Ly minimisation
problem. It is described how these function are computed after the algo-
rithm.

Algorithm 3

1. Find the solution pj, of the fine scale pressure equation and compute
the associated Darcy velocity vp,.

2. Compute the Lo-projections p, and ¢, of py and ¢, onto the coarse
grid.

3. For all neighbours i, j not evaluated earlier:

(a) 717 := g} / (b} — i)
where ¢*7 represents the mass flux from block ¢ to block j.
(b) H T <Ti7 < T, set T} =Ty
(c) else
i. D:={i,j}
ii. Do while (3k ¢ D,i € D, where ¢ and k are neighbours, AND
ai* & [(0'(D)—p)TL", ('(D) —pf)T"] AND n(DU{k}) < 3
AND k not member of a set D previous in the algorithm )
set D := D U {k}
iii. T4 .= T%i(D)

Note that in step 3c(iii) the algorithm may overwrite T};’[j that is set in
step 3b earlier, but step 3b will not overwrite any value of T} that is set
earlier.
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A flow path is defined as a sequence of blocks where there is mass flux
from one block in the sequence to its successor in the sequence. The flow
path in D may branch or there may be parallel pathes, see figure 2. Parallel
pathes are defined as two path that both run through two blocks ¢ and j
and that the two path are different between ¢ and j. The number of parallel
pathes in D, n(D) is defined as the largest number of different path that
run through two blocks %, € D and are different between i and j.

i G G N EN =5 I S>> —-5 1>
| 1] ALA [1]1]

Y[V (] Y[Y]Y

n(D):l +> -5 4>
n(D)=2 n(D)=3

Figure 2: The number of parallel path n(D) for different configurations D.
The arrows gives the flux direction.

The following three paragraphes describe how to calculate the functions
p (D) and T (D) as defined above. Assume that ¢*/ < (pi — p/)T?’ and
g (pt — pl) > 0 for the first two blocks in D. ThlS is set in statement
3c(i) in the algorithm. The case g7 > (p& — pi)T or ¢&9(pt — pl) < 0 is
treated correspondingly but then 77, is replaced by the upper limit 7;;. The
problem in D is that the pressure drop between pi at the influx and outflux
boundary of D is too large compared with the mass flux. The challenge is
to find 7% (D) such that the flow is as small as possible. Assume first that
n(D) = 1. In this case it is possible to obtain the mass flux g, over all block
sides in the coarse model i.e.

(' (D) — ¢/ (D))T*™ (D) = g (12)

and it is left to minimise |[p(D) — pp||p, the norm (4) integrated over D. It
is easy to show that T%7(D) = T}”. The difference in the pressure between
two blocks is easily calculated from ¢&7 /Tz’j at all block interfaces in the
path between the two blocks. Then the norm ||p(D) — pp||p is a quadratic
function with one unknown pressure that is straightforward to minimise.
The case n(D) = 2 is a somewhat more complicated. Let ki and ko
denote the blocks that is common in the two parallel pathes. If all transmis-
sibilities in D had been T;”, the two path would most likely specify different
pressure drop between k; and ks. The path that specify the smallest pressure
drop between ki and ko is the critical one, since the problem in D is that
the pressure drop is too large. Tt is easily shown that 7%/ (D) = TZ” in the
critical path. Assume first that it is possible to achieve this pressure drop
in the non-critical path between & and ks by having Ti7 < T (D) < TZ’J
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Then it is possible to obtain (12) and it is left to minimise ||p(D) — px||p-
Set 7% (D) in the non-critical path such that one obtains the same pressure
difference between the blocks ki and k9 as in the critical path and such
that p(D) is either as small as possible or as large as possible. One of these
two solutions will minimise |[p(D) — py||p- Then the difference in pressure
between two blocks in D is easily calculated from ¢&? /T%/ (D) on a path be-
tween the two blocks. The norm ||p(D)—pp||p becomes a quadratic function
with one unknown that is easy to minimise.

If it is not possible to achieve the same pressure drop between k1 and k3 in
the non-critical path for T% < T}, as in the critical path, it is not possible
to obtain (12). Then it is necessary to move some of the mass flux from the
critical path to the non-critical path such that we get the same pressure drop
with T%/(D) = Ti’j in the critical path and T%7(D) = ng in the non-critical
path. This will minimise the deviation in the ||(v(D) —vp) - n||p norm. Also
in this case ||p(D) — py||p is a quadratic function with one unknown that is
easy to minimise.

The case with n(D) > 2 is more complex and the algorithm stops to
increase D before n(D) > 2. In these cases the algorithm only minimise
the norms (5) and (4) in each set D isolated, without satisfying (6) at the
boundary. The algorithm is in this case only able to find an approximate
solution to the Ly minimisation problem.

Proof

It is trivial to see that the Ly projections p, and ¢, minimise the two Lo
norms in the Ly minimisation problem. This implies the part of the theorem
regarding algorithms 1 and 2. It is left to prove the properties of the Lo
minimisation problem using algorithm 3.

Each set D corresponds to the local neighbourhoods where p%; # pt.
The set D is only introduced if (10) is not satisfied. Each time a domain
D is generated, the algorithm minimise first the functional (5) and then the
functional (4) integrated over D. The set D is increased until the boundary
condition (11) is satisfied at the border of D. Then the solution in the entire
reservoir consists of blocks where p’; = p’ and q = g% on all block sides
and possibly one or several domains D where the transmissibilities minimise
the two functionals. If n(D) = 1, then ¢}/ = ¢%’ in D, and if n(D) = 2, then
there may be grid block boundaries where qﬁ;lj # ¢ in D. The algorithm
clearly finds the solution of the Ly minimisation problem as long as the
statement “ AND n(DU{k}) < 3 AND k not member of a set D previously
defined in the algorithm” is not invoked in the algorithm.
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6.3 Non-Diagonal permeability tensors

If the blocks are rectangular and there exists an effective diagonal perme-
ability, algorithms 1-3 give the same values of the transmissibilities as a
standard local upscaling method gives by first calculating effective perme-
abilities and then calculating the transmissibilities by harmonic averaging.
Hence, they also give the exact solution if the reservoir boundary condi-
tions are changed linearly. If there are large off-diagonal elements in the fine
scale permeability, then the transmissibilities found by Algorithms 1-3 de-
pend heavily on the boundary condition. This may be avoided by modelling
the flow between blocks that do not have a common side, i.e. cross terms.
Algorithm 4 described below, gives a finite difference approximation to the
differential equation that is exact when there exists an effective permeability
tensor and the pressure field is a linear function.

One set of boundary conditions uniquely defines diagonal transmissibil-
ities, Ty. It is necessary with several different sets of boundary conditions
in order to define transmissibilities Sy where there may be cross terms. We
have defined the Ly minimisation problem with cross terms such that the
flow is identical with the Lo minimisation problem for one particular set of
boundary conditions except that the flow from block ¢ to j and then from
j to k is allowed to flow directly from ¢ to k. The additional flexibility from
the cross term i,k is used to minimise the norm (5) integrated over block
side 4,7 and 7, k for the other sets of boundary conditions. The reason for
picking out one particular set of boundary condition is to reduce the com-
puting time. In an application where there are different sets of boundary
in different time intervals (see section 6.4), this particular set of boundary
condition may be the set of boundary condition that is believed to be most
valid for this time interval, while the other sets of boundary conditions are
the set of boundary condition for other time intervals. The minimisation
problem with cross terms is formulated with mass fluxes instead of veloci-
ties in order to simplify the notation.

L; minimisation problem with cross terms Define the transmissi-
bilities including cross terms S}’Ik by

1. Let T} be the diagonal transmissibilities from the Lo minimisation
problem for the sets of boundary conditions o = 1,...,m, with corre-
sponding pressure p, = py, and fluzes g3’ = T’ (py, — pl) where
m > 1.

2. Define which cross terms i,k to include, requiring that ¢ and j are
neighbours and j and k are neighbours.
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3. Determine Sg = {S"*}; ; such that for each cross term separately

S (@ (Sn) — 49 + @ (Sm) — i) (13)

a=1

1s minimised under the constraint
S (ph, —pk) = (T = S™)(ph, —pl) = (TLF = S7%)(ph, — pf). (14)
where

q"(Sn) = 8" (po — pl) + §"* (v, — P
¢ (Su) = S™*(pl, — pi) + SV (vl — ).

The constraint (14) implies that for the set of boundary conditions cor-
responding to a = m is part of the flux from ¢ to j and j to k substituted
by a direct flux from ¢ to k. In (13) it is summed over the other boundary
conditions evaluated. In the algorithm below it is included cross terms if
the diagonal transmissibilities varies considerably between the different sets
of boundary conditions. The following algorithm computes the cross terms:

Algorithm 4

1. Use another algorithm to find 727, the diagonal transmissibilities for
the Lo minimisation problem with corresponding pressure p, = pu,a
and flux g, = qp, for the set of boundary conditions o = 1, ..., m for
m > 1.

2. Define cross terms in block 7 if

NI

where T% = 1/m ¥, T and c is a constant. If ¢ < 0 there are cross
terms in all blocks. Define maximum 1(3) cross terms per block in
2D(3D). If neighbouring blocks have cross terms, let the cross terms
be in the same direction.

3. Find the cross term S that minimise (13) i.e.
ik — Lamt (187 = T3)) (o — ph) + (13" — T45) (ph — p3)

m-1 Ky _ Pk pn)(pa —ph) _ (ph—pk)(Ph—pk)
—1 (200 — &) — Ph—Dh P, —Dpk )

, (15)

and S*J and S%* from equation (14)

Gid — i Szkpm Pm

— Ph
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and . &
Gisk — ik _ Si,kp:n — Pm

pm — P,
By applying (14) the functional (13) can be written on the following
form
1 (i i (i ) 1 Gisk( B G
ot (((Ty —T30)(ph — ph) + STH(PatmdBacra) pi 4 ph))2y
ik, P i i ok (jmfk_-
(T4 — T) (], — pk) + SP4(Chpllrhork) — g k)2
The minimum of this expression is obtained for S%* as defined in (15).
The cross terms are illustrated in two examples. The first example shows
that the cross terms gives the exact solution for linear pressure fields when
there is a constant full permeability tensor. Then it is necessary with one
cross term in 2D and 3 cross terms in 3D. The second example is numerical.

Example 1
Let the effective full permeability tensor and velocity be
Ky, Kwya K, Ko+ Kwyb + K,,c
K = K:L‘ya Kyy, Kyz y v = Kwya —+ Kyyb —+ Kyzc
KZZ'? szb7 KZZ Kzg;al + szb + Kzzc
for the linear pressure p = —ax — by — cz. The velocity is

Sza + Syy(a +b) + Sy, (a+c)
v=| Syb+ Syy(a+0b)+ Sy, (b+c)
Syc+ Sge(a+c¢)+ Sy (b+c¢)

for the numerical solution with cross terms. These two expressions are identi-
cal when S; = Ky —Kyy—Ky,, Sy = Kyy—Kpy— Ky, S, = K, — Ky, — Ky,
Szy = Kgy, Szz = Ky, and S,y = Ky, which is the solution obtained by
formula (15).

Example 2 Assume that the effective permeability is

w[21]
and that block no 2 is neighbour to blocks 1 and 3. In the example the
cross term between block 1 and 3 is calculated. All block sides have length
1. Algorithm 4 gives the transmissibilities §'? = §2% = §'3 = 1. The cross
terms gives the correct velocity which may be calculated analytically. The
example illustrates that when the off-diagonal terms are large, then cross

terms are essential in order to model the flow correctly when the pressure
gradient varies.

Norwegian Computing Center, Box 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



18 L. Holden and B. F. Nielsen.

a| p | pa—pa | T | pa—p) | TS® | po—pp
1| 2%y 1 4 2 25 3
2 | 2xty | -1 0 2 1.5 1

Table 1: The transmissibilities and pressure differences for two different set
of boundary conditions

B W N R

p |SP=1,8%=188=1|TP=25T7"=4|T7 =15T.° =
'2X'y [554] [534] [3,0]
-2x+y [330] [57'4] [330]

-x [2,1] [2.5,0] [1.5,0]
-X-y [3,3] [2.5,4] [1.5,0]

Table 2: The velocities for different transmissibilities with and without cross
terms for different set of boundary conditions

6.4 Multiphase

Multiphase, compressible flow may be described by the equation

div(a(S,p)Vp) = f(p,pt, S, St) (16)

where S, S;, p, p; are saturations and pressure and their derivative with re-
spect to time, see [14]. The mass flux between block 7 and j is

g’ = en(S)Ty (o, — 1) (17)

where the relative permeabilities are the main contributor to c¢,. When there
has been a considerably change in the boundary conditions or the satura-
tions, then it is necessary to update the transmissibilities. This may be
done using the following algorithm where it is assumed that the pressure
and saturation is known in each coarse grid block

Algorithm 5

1. Distribute the saturation in the fine grid blocks inside each coarse grid
block using e.g. capillary equilibrium or viscous dominated flow.

2. Solve the pressure equation (16) at the fine grid assuming a(S, p) and
f(p,pt, S, St) are calculated from the coarse grid pressure and satura-
tion distribution.

3. Find average pressure in each coarse block p,, the mass flux over each
coarse grid block side g, and the constant c,(S) in equation (17) from
any method for upscaling relative permeabilities.

4. Find the transmissibilities T};j € [Tz’j , T(ij’j ] using algorithm 1 or 2 that
minimise the Lo minimisation problem using p, and g,.
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Figure 3: The solution domain/block B and the first set of boundary con-
ditions considered in section 7.

7 Analytical examples

The purpose of this section is to present some examples illustrating various
properties of the global upscaling techniques discussed in sections 3-6. In
this simple cases it is possible to solve the associated minimisation problems
by hand and get explicit expressions for the upscaled permeability. These
expressions are used to compare the various approaches to the problem.
In section 8 we will present more realistic test problems along with their
numerical solution.

For simplicity, we will consider a two dimensional reservoir in this sec-
tion. Consider the fine scale pressure equation (1) subject to the boundary
conditions given in Figure 3. Here, B = (0,1) x (0,h) represents the do-
main of an (academic) reservoir. We will assume that B is composed of
non-overlapping fine scale grid blocks {b;} ;,

and that kj, is a piecewise constant function, i.e.
kn(z) =k; forallz €b;andi=1,...,n,

where {k;}?_, are positive constants.

Our goal is to determine an upscaled permeability value kg for B, i.e. we
assume that the coarse grid consists of one block, namely B. Consider the
coarse scale pressure equation (2), also subject to the boundary conditions
given in Figure 3. Clearly, the solution py of this problem is given by

pu(z,y) =1— % for all (z,y) € B,
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and is thus independent of kr. However, the associated velocity field v
will depend on kp. More precisely,

vg = —k)HVpH = (kH/l,O)

Below we will apply the WOLS scheme, the OLS scheme and the energy
norm method to determine kg.

7.1 The WOLS scheme

Recall the definition of the WOLS method given in section 5. For the prob-
lem described above, it is straight forward to find the solution of the associ-
ated minimisation problem, see (3). More precisely, it is easy to verify that
the solution is given by the harmonic average of the fine scale permeability

data, i.e.
l-h
kg = p—rk
i=1k;
Here |b;| represents the measure (area) of b;.
It is well known that, in some cases, the harmonic mean tends to under-
estimate the flow and may overestimate the effect of low permeable zones.

For instance, if k; = € ~ 0 and k; = 1 for ¢ # j then

e-n2

kH:e(n2—1)+1’

where we assume that [ = h = 1. Hence kp is of order ¢, i.e. close to zero,
which is not desirable in such cases.

7.2 The OLS scheme

Consider again the L?-norms defined in (4) and (5) and the Ly minimisation
problem given in section 6. Clearly, if the following problem

min || vy, — v (ka) |72, (18)
kg

has a unique solution, then this solution must be the upscaled permeability
kpy determined by the OLS scheme (if it is unique then it is not necessary
to minimise the difference between the fine scale and coarse scale pressure
fields).

For the simple case discussed in the introduction of this section, (18) can
easily be solved by hand. The unique solution is given by

l
kg = —/ Vpp - kpyVpy dx.
h /B
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Figure 4: Suitable boundary conditions used in the “energy norm” approach
to upscaling in section 7

This result coincides with the coarse scale permeability obtained by the
energy dissipation principle, i.e. by requiring that

/B Vpu - (kuVpn) de = /B Vou - (knVph) dz.

In such simple cases the classical schemes are well known to handle the up-
scaling problem accurately. Thus we conclude that the OLS method provides
adequate results for this kind of problems.

However, it should be mentioned that in more complex, and realistic,
cases the results obtained by the OLS technique differs significantly from
the upscaled permeability defined by local methods, see section 8.

7.3 The energy norm

Let us have a closer look at the energy norm approach to upscaling. Recall,
that for the test problem discussed above, py(kg) = 1 — z/l and is thus
independent of kp. Consequently, the problem

min || py — prr(har) [
H

is not meaningful in this case. The energy norm simply fails to define an
upscaled permeability field.

It turns out that this problem can be rectified by changing the boundary
conditions. Consider the boundary conditions depicted in Figure 4. In this
case the solution of coarse scale pressure equation (2) is given by

pu(z,y) = pr(km; z,y) = —— + —

and is thus depending on k. Moreover, it is easy to verify that the solution
of the energy norm minimisation problem is given by the arithmetic average
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of the fine scale permeability data

_ fB kg dz _ Z?:l ki - by
| B |B|

ky

However, estimates based on the arithmetic average tend to overestimate
the flow in the reservoir. Thin barriers are not honoured sufficiently on the
coarse scale.

In this section we have seen that, for a simple test problem, both the
WOLS scheme and the energy norm approach to upscaling fail to produce
an acceptable permeability field on the coarse mesh. Whereas the OLS
technique provide adequate results.

8 Numerical experiments

Now we turn our attention to a series of numerical experiments illustrating
the behaviour of the upscaling technique derived above. In all of the exam-
ples we have used the program packages FLUVIAL [11] and CONTSIM [13],
developed at the Norwegian Computing Center, to generate the fine scale
permeability data, i.e. to generate the reservoir models. These commercial
software packages, used by several oil companies to model fluvial reservoirs,
produce realistic input data to be applied in the flow simulators. Thus, they
should provide interesting and challenging test problems.

In each case the permeability data was upscaled from a 20 x 20 x 20
uniform mesh to a 10 x 10 x 10 uniform grid. In addition to algorithms 1 and
2, defined in section 6.1, we applied the classical local method, introduced
by Warren and Price in [16], to compute the upscaled permeability data.

Finally, we ran algorithm 1 without any bounds on the transmissibili-
ties, i.e. Tp? = —oo and T = oo for all 4,5 (cf.section 6.1). In particular,
accepting both negative and positive transmissibilities. The resulting coarse
scale pressure equation (2) will be indefinite. More precisely, the stiffness
matrix A, in the associated linear equation system Az = b, will have both
negative and positive eigenvalues. It seems like this approach is not appli-
cable for a commercial reservoir simulator. But from a theoretical point of
view, this approach is appealing. As we will see below, this method repro-
duces the average fine scale flow on the coarse mesh, cf. the introduction
to section 6. Moreover, the production and injection rates in the wells are
preserved on the coarse scale.

In all the tables below Locale ups. refers to the results obtained by the
classical local upscaling method, and Indef. represents the results generated
by the theoretical approach (allowing both negative and positive transmis-
sibilities) described above. Finally, Proj. refers to the Ly projection of the
fine scale pressure (or velocity) onto the coarse grid. We would like to em-
phasize that the projection is the best approximation on the coarse scale
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of the fine scale pressure (velocity). Hence, it is not possible to obtain a
smaller error than the projection error. The reader should keep this in mind
while reading the following sections.

8.1 Example 1

We consider a fluvial reservoir containing two channels and two wells, an
injector and a producer. The specified pressure in the injector and the
producer is 1 and 0, respectively. Both wells have been observed in both
channels. The sand gross, i.e. the volume fraction occupied by the channels,
is 4%. The rest of the reservoir contains low permeable rocks.

Table 3 contains the projection errors and the errors introduced in the
pressure and velocity field by the upscaling methods discussed above. Clearly,

—PH|12 h—VH||[2

Alg | Bppre | Mpp
Proj. 0.0125789 | 0.708098
Indef. 0.0125924 | 0.708098
Alg. 1 0.0389834 | 0.755025
Alg. 2 0.0129805 | 0.709159
Locale ups. | 0.0987882 | 0.872409

Table 3: Numerical results obtained in Example 1; Relative error in the
pressure and velocity field.

the Indef. approach provides optimal results, in the sense that the errors
are identical (neglecting the numerical round off errors) to the projection
errors. The performance of algorithm 2 is comparable to that of the Indef.
method, and is significantly better than algorithm 1. We observe that the
error in the pressure field is unacceptable for the local method.

These observations are confirmed by Table 4. Only relatively small errors

Alg. welll | well 2
Fine scale | 86.207 | —86.207
Indef. 86.206 | —86.207
Alg. 1 72.914 | —72.913
Alg. 2 84.878 | —84.877
Locale ups. | 32.028 | —32.028

Table 4: Numerical results obtained in Example 1; Production and injection
rates in the wells.

are introduced in the production and injection rates by algorithm 2. Also
the results obtained by algorithm 1 are acceptable, whereas the local method
fails to solve this problem.
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8.2 Example 2

This case is almost identical to the reservoir discussed in Example 1. Recall
that in Example 1 both wells where observed in both channels. In this case
we move one the wells, the producer, such that it is positioned just outside
the channels. More precisely, the well path of the producer constitutes of
fine scale blocks which are neighbour cells to the channels.

Again, see tables 5 and 6, the Indef. technique provides optimal results.
Both algorithms 1 and 2 are capable of solving the problem, whereas the

h—DPH|| 1,2 h—VH||[,2

Alg. T
Proj. 0.0200679 | 0.734783
Indef. 0.0200679 | 0.735052
Alg. 1 0.0205625 | 0.888777
Alg. 2 0.0201004 | 0.737088
Locale ups. | 0.0525788 | 7.28119

Table 5: Numerical results obtained in Example 2; Relative error in the
pressure and velocity field.

local method clearly overestimates the flow in the reservoir. It seems like

Alg. well 1 | well2
Fine scale | 1.133 | —1.133
Indef. 1.132 | —1.133
Alg. 1 1.088 | —1.088
Alg. 2 1.150 | —1.151
Locale ups. | 9.511 | —9.511

Table 6: Numerical results obtained in Example 2; Production and injection
rates in the wells.

the local method “activates” the producer on the coarse scale. The flow is
overestimated by a factor of ~ 9.

8.3 Example 3

As in the previous examples we consider a fluvial reservoir. This is a more
complex case, the reservoir contains 18 channels, 3 wells (one injector and
two producers), and the sand gross is 30%. The pressure in the injector and
producers is 1 and 0.5, respectively.

According to tables 7 and 8 the general picture is very similar to the
observations made in examples 1 and 2. However, in this case it is not clear
that algorithm 2 provides more accurate injection and production rates in
the wells than algorithm 1. But both methods produce acceptable results
compared to the local upscaling technique.
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—PH||1,2 —VH||12

Alg. | Bpme | M
Proj. 0.0266725 | 0.650512
Indef. 0.0266736 | 0.660437
Alg. 1 0.0278723 | 0.733493
Alg. 2 0.0268452 | 0.663891
Locale ups. | 0.0466163 | 23.5491

Table 7: Numerical results obtained in Example 3; Relative error in the
pressure and velocity field.

Alg. well 1 well 2 well 3
Fine scale 2.300 —1.261 —1.040
Indef. 2.302 —1.260 —1.041
Alg. 1 2.262 —1.292 —0.970
Alg. 2 2.372 —1.315 —1.056
Locale ups. | 42.9372 | —42.1198 | —0.817261

Table 8: Numerical results obtained in Example 3; Production and injection
rates in the wells.

8.4 Example 4

In this experiment we want to check if the performance of the coarse scale
reservoir model, generated by the OLS scheme, is stable with respect the
boundary conditions. The fine scale permeability field and the positions of
the wells are as in example 3. However, the pressure in the producers has
been changed form 0.5 (in wells 2 and 3), to 0.3 in well 2 and 0.7 in well 3.

We did not apply algorithms 1 or 2 directly to this problem. Instead
we used the transmissibilities generated by algorithm 2 in example 3 in the
discretization of the coarse scale pressure equation (2). Only the well data
was changed.

Tables 9 and 10 confirms that the OLS scheme is stable with respect to
this kind of changes in the boundary conditions. Again the locale upscaling

lpr—pHllr2 | vn—vallL2

lpnll2 [l 2
Proj. 0.0311073 | 0.637436
OLS 0.0311965 | 0.656585
Locale ups. | 0.0611272 | 30.7218

Table 9: Numerical results obtained in Example 4; Relative error in the
pressure and velocity field.

method fails to handle the problem. The effect of decreasing and increasing
the pressure in wells 2 and 3 can easily be observed by compare the fine
scale data (or OLS data) in tables 8 and 10 (The production in well 2 has
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increased and the production in well 3 has decreased).

Scale well 1 well 2 well 3
Fine scale 2.388 —1.766 —0.622

OLS 2.476 —1.843 —0.632
Locale ups. | 59.4518 | —59.0378 | —0.413872

Table 10: Numerical results obtained in Example 4; Production and injec-
tion rates in the wells.

9 Conclusions

We have developed a new upscaling technique for computing the permeabil-
ity on a coarse scale. The method is applicable whenever traditional locale
methods fail to compute an acceptable permeability field, e.g. upscaling of
blocks close to wells and cases involving heterogeneities on the coarse grid
block scale. In such cases, is it impossible to compute an effective perme-
ability based on locale observations of the pressure and velocity fields. The
properties of the coarse reservoir model will simply depend heavily on the
global flow pattern.

The basic idea behind the new method is to try to minimise the errors,
introduced by the upscaling process, in the pressure and velocity functions.
We have discussed three different norms for measuring these errors; the
energy norm, the inverse energy norm (WOLS) and the Ly norm (OLS
method).

The energy norm and WOLS scheme have nice mathematical properties.
However, in some cases they fail to preserve important flow properties on
the coarse scale.

The Lo norm approach to upscaling seems to be promising. More pre-
cisely, in most coarse grid blocks the total mass flux over each coarse grid
block interface is preserved on the coarse mesh. Leading to very accurate
production and injection rates in the wells. Moreover, the associated minim-
sation problem can be solved very efficiently. Traditional, and computational
expensive, optimization algorithms are not needed. However, the solution
of the fine scale pressure equation is required. It turns out that, in view of
modern numerical methods for elliptic differential equations, the efficiency
of the OLS scheme is comparable to the performance of the traditional locale
methods.

Furthermore, the paper provides a mathematical analysis of the new
OLS scheme, and possible extensions to handle non-diagonal permeability
tensors and multiphase (relperm) cases. These features should make the
method applicable to a wide range of practical problems.
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Finally, through a series of analytical examples and numerical experi-

ments we have seen that the OLS scheme produce accurate results for sev-
eral test problems. Including cases where locale methods fail to produce an
acceptable upscaled permeability field.
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