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1 Assessing grid resolution sensitivity

In our main project report [1] we investigated cropbox placement sensivity. Here,
we examine how variogram estimation is affected by a change in the resolution
of the resampled grid.

We do this by estimating variograms at the same locations in the same delta,
varying how the resampling is done, and comparing the resulting estimates.

1.1 Grid resolution levels
We consider three different levels of resolution.

1. Normal. The default output resolution of the resampling routine in the vari-
ogram estimator. The lateral grid cell size is the same as the Delft3D output
grid, while the vertical grid cell size is 0.25 m.

2. Geogrid. Double the normal horizontal grid cell size. Vertical grid cell size:

1m.

3. Simgrid. Four times the normal horizontal grid cell size. Vertical grid cell
size: bm.

We vary the vertical resolution by passing different values of the input parameter
resample_dz to the variogram estimator. To vary the lateral resolution, we begin
by using standard resampling to create a grid with the desired vertical resolution
and the normal (fine) lateral resolution. If the desired lateral resolution is lower,
we then aggregate horizontal neighborhoods of either two by two (normal —
geogrid) or four by four (normal — simgrid) cells.

Note that we could have done the vertical coarsening the same way as the hori-
zontal coarsening, by first resampling onto a regular grid with a vertical resolu-
tion of 0.25m, and then aggregating three-dimensional neighborhoods of 2* and
43 cells.

We consider averaging as the preferred upscaling mode, and decimation as an
alternative mode. Let ¢[i, j, k| be an element of a resampled but not yet upscaled
porosity field. Denote by /¢ the factor by which the grid should be coarsened hor-
izontally. Neighborhoods of ¢ by ¢ by 1 cells are to be aggregated into single cells.
When upscaling by averaging, we define element i, j, k of the upscaled field by

-1 (-1

Caveell, J, k| = ZZ i + A1, 05 + Aj, k],
=0 Aj5=0

and when upscaling by decimation, we define it by

@dec,f[@.ﬁ k] = 90[527 5], k]
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Table 1. Start and end coordinates for cropbox 1 to 5. See Figure 1 for map view.

Number X0 Yo 1 Y1
1 5250.0 5600.0 8250.0 8400.0

2 5250.0 2800.0 8250.0 5600.0
3 8250.0 5600.0 11250.0  8400.0
4 5250.0 8400.0 8250.0 11200.0
5 5250.0 2000.0 12250.0 12000.0

1.2 Resolution-dependent input parameters
Certain internal variables in the variogram estimator depend on the grid cell size
because they are given as a number of cells or cell widths.

¢ The “weighting width” sigma_wt controls how concentrated or diffuse the
weights used in least squares curve fitting should be.

¢ The initial values of major, minor and vertical correlation range passed to the
curve fitting function.

* The upper and lower bounds of major, minor and vertical correlation range
passed to the curve fitting function.

To meaningfully compare estimates across grid resolutions, these parameters will
have to be scaled inversely to the grid cell size, so that the actual lengths they
correspond to remain constant.

2 Estimation on real and synthetic data

We use two sources of input-data for the variogram estimator. The first is the
porosity field from a Delft3D realization. The other is a realization drawn from a
Gaussian random field with a known variogram and no trend. This allows us to
compare the performance of the estimator in a realistic setting where a trend is
likely to be present to its performance in an idealized setting where we know the
implicit assumptions of the estimator are satisfied.

2.1 Delft3D realization MS2 12

We consider five cropboxes located on the delta in the MS2_12 realization. Table 1
gives upper and lower bounds for the z and y coordinates of these cropboxes, and
Figure 1 shows their positions relative to each other and the delta in map view.
Boxes 1 to 4 are adjacent squares of equal size, while box 5 is a larger rectangle
which covers most of the delta top and delta fringe, and encompasses the four
smaller boxes.

To capture the effect of varying grid resolution on the variogram estimation, we
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Figure 1. Cropbox outlines. The background porosity field has been resampled inside the
region covered by cropbox 5. Displayed porosity values are vertical averages.
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Table 2. Parameters varied in the MS2_12 sensitivity study, and the various valus used
for each.

Parameter Values
sigma_wt small (10/5/2.5 normal/geogrid /simgrid cells)
large (40/20/10 normal/geogrid /simgrid cells)
resampling mode averaging
decimation
grid resolution level normal
geogrid
simgrid
cropbox 1to 5 (see Table 1)

variogram type (family) exponential
gaussian
general exponential
spherical

estimated one variogram for each unique combination of the input parameters
listed in Table 2. This yielded a set of 240 estimation results. We present a subset
of these estimates here.

Figure 2 shows how estimates of major correlation range vary with grid resolu-
tion when resampling is done by averaging and sigma_wt is on the small level.
The results are broken down by variogram type (one per panel) and cropbox (one
per line in each panel). Ideally, the range estimates would remain approximately
constant as the grid becomes coarser. This is clearly not the case in Figure 2. In-
stead we see a general pattern in which the estimated ranges tend to increase
as the resolution decreases. The spherical variogram estimates for cropbox 1 to
4 with simgrid resolution are an exception, as these range estimates are smaller
than their higher-resolution equivalents.

Figure 3 tracks changes in estimated azimuths in the same way as for major cor-
relation range in Figure 2. The estimates for cropboxes 1, 2 and 5 are most robust,
and least affected by the change in grid resolution. The estimates for cropboxes
3 and 4 are more variable, both within and between grid resolution levels. This
kind of variation is expected when the empirical variogram is close to isotropic.

Figure 4 shows empirical variograms for cropbox 1 plotted together with fitted
exponential variograms for small and large values of sigma_wt. The fitted vari-
ograms shown in orange in this figure have the major correlation ranges shown
by the red line in panel (a) of Figure 2. With normal grid resolution, the fit is
reasonably good in the horizontal directions when sigma_wt small, but poor for
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Figure 2. Estimates of major correlation range plotted against grid resolution level for four
different variogram families. Each curve represents one cropbox.
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Figure 3. Estimates of azimuth plotted against grid resolution level for four different vari-
ogram families. As in Figure 2, each curve represents one cropbox. Note that all azimuth
estimates for exponential and general exponential variograms are identical.
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sigma_wt large. For the vertical direction, the fit is acceptable for both large and
small values.

For the geogrid resolution, the pattern is similar. The fit is good in the vertical di-
rection, and significatly poorer in the horizontal directions. Again, the best match
is achieved for sigma_wt small.

Finally, with simgrid resolution, the thickness of the MS2_12 model only affords
one nonzero vertical lag distance. As a consequence the vertical fit is not meaning-
ful in this case. The horizontal fit shows the same pattern seen with finer resolu-
tions. The overall goodness of fit is poor, with a small value of sigma_wt yielding
a slightly better match with the empirical curve.

2.2 Synthetic data reference

As a basis for comparison we have run variogram estimation on synthetic data
using the same settings and the same three grid resolutions as for the MS2_12
case. Synthetic porosity data were created by simulating a gaussian random field
with a known variogram on a regular grid of the same size as the resampled grid
on the cropboxes 1 and 5. A linear mapping was applied so that the synthetic
tield has the same minimum and maximum values as the MS2_12 porosity field
in the two cropboxes.

Figure 5 shows major range estimates in the cropbox 1-sized synthetic data case
varying in response to coarsening grid resolution, and is comparable to Figure
2. Figure 6 compares empirical variograms and fitted exponential variograms for
the same synthetic case, and is comparable to Figure 4. The estimates of major
correlation range based on synthetic data stay approximately constant when the
grid resolution changes from normal to geogrid. In the transition from geogrid to
simgrid, there estimates begin to change in the synthetic case as well.

In Figure 6 we see that it is not easy to achieve a good fit, even when the data is
drawn from a Gaussian random field. In this case, the true vertical range is too
long relative to the range of available lag distances to be estimated reliably. The
match between the empirical and fitted varigrams in the horizontal directions is
reasonably good at normal and geogrid resolution.

3 Analysis and recommendations

Having collected and studied the set of estimates produced by running the var-
iogram estimator on porosity data from a Delft3D model and on synthetic data
from a stationary Gaussian random field at three levels of grid resolution, we can
make the following observations.

(A1) There is a grid resolution effect
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Figure 4. Empirical variograms for cropbox 1. Fitted exponential variograms for sigma_wt
small and large.
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Figure 5. Estimates of major correlation range baed on synthetic data, plotted against
grid resolution level for four different variogram families. The dimensions of the synthetic
volumes used were chosen to match the dimensions of cropboxes 1 and 5.
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Figure 6. Empirical variograms for cropbox 1. Fitted exponential variograms for sigma_wt
small and large.
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(A2)

(A3)

(A4)

(A5)

Parameter estimates do not always stay the same when the grid scale changes.
The direction and magnitude of the change are difficult to predict. When
sigma_wt is small, estimated correlation ranges tend to increase as the grid
gets coarser. When sigma_wt is large, the response to coarsening is less sys-
tematic, with estimated ranges increasing for some cropboxes and variogram
types, while decreasing for others.

The grid resolution effect is more pronounced at coarse resolutions

A change from geogrid resolution to simgrid resolution tends to cause esti-
mates to change much more than a change from normal resolution to geogrid
resolution does.

Weighting matters

Estimates are sensitive to the degree of concentration of the weights in the
loss function used in least squares fitting, controlled by the input parameter
sigma_wt. As a source of variation among estimates, weighting sensitivity
appears to be at least as important as grid resolution sensitivity.

If vertical cell counts are too low, estimates are unreliable

Estimating the vertical range becomes a problem for coarse grids, because
the vertical cell count becomes too low for reliable estimation. In the case of
MS2_12, the data volume is about 20 m thick, and resampling with a vertical
resolution of 1 m (geogrid resolution) gives about ten empirical variogram
values, which is enough to deduce the variogram shape somewhat accu-
rately. By contrast, resampling at 5m vertical intervals (simgrid resolution)
only gives two points of the empirical variogram, which is not enough to
reason effectively about the shape of the vertical component of the underly-
ing variogram.

The variogram models currently used are inflexible

In the majority of variogram estimates examined, the fitted parametric vari-
ogram matches the empirical variogram quite loosely. The lack of fit seems to
be explained in part by a lack of flexibility in the parametric variogram model
used, which in turn has several causes. First, we are only using a single var-
iogram function, which means we can only model correlation structure at
one scale at a time. Second, the same variogram shape is assumed to apply
in the all directions. Third, the sill variance is assumed to be the same in
every direction. This is a simple and parsimonious model with a small num-
ber of parameters, but it has significant coupling between the vertical range
and the major and minor horizontal ranges, and this seems to complicate the
curve fitting.

Given these observations, there appear to be several avenues to potentially im-
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proving the variogram modeling approach taken in this project. The following

points seem especially relevant.

(BI)

(B2)

(B3)

Adding flexibility to the variogram model

There are many ways to relax the parametric variogram model so a tighter
fit to the empirical variogram can be achieved. Although flexibility can be
increased while sticking to a single variogram function, adding flexibility
by nesting variograms seems like the natural next step in this direction. In
practice, this would entail defining the variogram to be estimated as a linear
combination of a small number, say 2-5, of elementary variogram functions,
with some having short correlation ranges and others having longer ranges.
Each elementary variogram contributes a certain proportion of the variance
of the nested variogram, and these variance contributions must be estimated
along with the other parameters. The parameter estimation can be simulta-
neous, fitting all the elementary variograms at once, or it can be sequential,
in which case the long-range components would typically be fitted first, and
the fine-scale components last.

Decoupling vertical and horizontal correlations

Using a separable covariance model that factorizes into horizontal and verti-
cal factors would completely decouple the horizontal and vertical compo-
nents of the variogram, simplifying the curve fitting. This is a strong as-
sumption, with important implications for data conditioning. A partial de-
coupling, or loosening, is likely preferable. Again, nested variograms can
achieve this if one or two of an elementary variogram’s correlation ranges are
allowed to tend to infinity. In that case, the elementary variogram in question
does not contribute to the shape of the nested variogram in the directions
where the ranges are infinite.

Making use of interactivity

The variogram estimator created in the project was intended to make the
estimation as automatic as possible, with the possibility of manually check-
ing the quality of the estimates by inspecting diagnostic plots comparing the
empirical variograms and the paramtric funcions fitted to them. Some ap-
proaches to variogram estimation rely heavily on interactive model building,
whereby the user adds, removes, adjusts and tweaks variogram components
until a satisfactory fit is obtained. While this approach is very different from
ours, we should not dismiss out of hand the notion that our estimation pro-
cedure could benefit from incorporating more interactivity. Computing the
empirical variogram is much more computationally intensive than the sub-
sequent weighted least squares curve fitting. If the heavy computations were
done in advance, modifying the estimated parameters and visualizing the
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(B4)

corresponding change in the variogram curve could be done in real time. As
could evaluating the goodness of fit of the updated model. This suggests a
semi-automatic variogram modeling approach, where a suggested model is
fitted in advance, and the user chooses whether to accept the suggestion as
it is, or improve it through adjustment. This would be faster than a purely
interactive approach, and more robust than a fully automatic approach.

Taking trends into account

The isolation and removal of trends in the input data has been considered to
lie outside the scope of the project. That is not to say that there are no trends
in the Delft3D models, or that the presence of a trend can be safely ignored.
As has been demonstrated in the previous section, the variogram estimator
performs differently when run on the MS2_12 data and when run on a real-
ization drawn from a Gaussian random field with no trend. It is reasonable to
suspect that the presence of a trend in the MS2_12 realization is at least part
of the explanation. Trend removal would entail fitting a slowly varying trend
function to the input data, say the porosity field, and subtracting it from the
input data, producing a residual field. Variogram estimation would then be
carried out normally using the residual field as input data. The estimation of
the trend function should preferably be done before cropping, to make best
use of the available information in the process model realization. If informa-
tion about the location of the delta fringe and the main channel’s entry point
into the model is available, then it should be possible to use this information
to support the trend estimation.
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