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ABSTRACT
Smart meters provide fine-grained electricity consumption report-
ing to electricity providers. This constitutes an invasive factor into
the privacy of the consumers, which has raised many privacy con-
cerns. Although billing requires attributable consumption report-
ing, consumption reporting for operationalmonitoring and control
measures can be non-attributable. However, the privacy-preserving
AMS schemes in the literature tend to address these two categories
disjointly — possibly due to their somewhat contradictory charac-
teristics.

In this paper, we propose an efficient two-party privacy-pre-
serving cryptographic scheme that addresses operational control
measures and billing jointly. It is computationally efficient as it is
based on symmetric cryptographic primitives. No online trusted
third party (TTP) is required.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols;
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1 INTRODUCTION
Traditional offline meters require manual readings that are sup-
plied to the electricity suppliers on a coarse-grained basis, typi-
cally every month. By the introduction of advanced metering sys-
tems (AMS), smart meters allow two-way communication and au-
tomatic consumption reporting at short time intervals to the head-
end systems of the electricity providers. (In the remainder of this
paper we refer to electricity provider as utility). Availability of fine-
grained measurements1 increase the utilities’ control of electric
consumption and network loads, which allows utilities and grid
operators to maximize their control and monitoring of consumed
electricity with regard to billing and operational control measures,
such as load monitoring and load management. At times when the

1The terms measurement and consumption value are used interchangeably in this
paper.
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collective consumption reaches peaks or lows in the distribution
networks, it is desirable to smooth the peaks and lows to even
the load distributions. Demand response is such a measure for load
management, which are programs that offer consumers economic
incentives in order to adapt their usage of electricity in response
to wholesale market price signals.

Fine-grainedmeasurements also allows dynamic billing regimes
in accordancewith hour-to-hour variable tariffs, which is not possi-
ble with traditional meters. In essence, the motivation for introduc-
ing smart meters is their capability of fine-grained measurements
that provides increased and more precise billing and operational
control.

Realtime monitoring and registration of electric usage consti-
tute invasive factors into the privacy of the consumers, and there
has been raised considerable concerns about the erosion of privacy
that this causes [1].

Operational control measures (load monitoring, load manage-
ment) and variable-tariff billing require fine-grainedmeasurements,
but the billing operation is carried out on a coarse-grained basis,
like every month. Operational control measures are not concerned
about the consumption of individual users, but rather total loads on
individual lines and units in the network. Although there are con-
trol units at all levels in the power distribution grid, additional con-
trol is achievable by collecting fine-grained consumption measure-
ments from users. As long as it is assured that individual measure-
ments do not originate from specific identifiable users but from a
specific group of users, cf. anonymity sets [2], the privacy of the
individual users is protected. For instance, each user could be iden-
tified according the substation they are connected to, which is a
number of users for each substation.

Attribution is the ability to identify the originator of a message
that has been sent. Two key observations in the AMS scenario are
that:

(1) Operational control measures do not require attributable
consumption reporting.

(2) Billing must be attributable.

Privacy is attainable if measurements are non-attributable, while
in order to carry out billing, measurements must be attributed to
the pertaining users. These characteristics are therefore somewhat
contradictory. Most papers that address privacy in the AMS sce-
nario focus on privacy-preservation with regard to either opera-
tional control or billing. Few authors address both cases combined.
Those that do, do this in such a way that billing and operational
control are handled disjointly. By this we mean that the proposed
privacy measures for both areas are disjoint, resulting in hybrid
schemes (e.g., [3, 4]).

Smart meters report merely quantities of consumed electricity.
AMSmeasurements are perhaps less sensitive in nature than other
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types of personal data, like personal health data, information about
imprisonments and penalties, economicalmisconduct, etc. Electric-
ity consumption data are rather transitory in nature andmay there-
fore only carry limited sensitivity or have even no interest as time
passes, while the sensitivity levels of the latter keep rather steadily
up as time passes. Measurements that are non-recent do not reveal
current actions and activities in households, and may therefore
have less interest and sensitivity. AMS measurement sensitivity is
therefore limited by a time factor.

Contribution. In this paper we propose a two-party privacy-pre-
serving cryptographic scheme that involves a smart meter and the
utility. There is no online third trusted party (TTP). The scheme ad-
dresses operational control measures and billing jointly. The goal
is to protect user privacy with regard to the utility for both opera-
tional control measures and billing. The proposed scheme assures
time-bound non-attributable fine-grained consumption measure-
ments in correspondence with operational control. By the time of
billing, the reported consumption measurement values are made
attributable to the utility by action of the smart meter. By this mea-
sure, user privacy is assured within a periodical basis. The scheme
is computationally efficient as it is based on symmetric crypto-
graphic primitives.

2 RELATEDWORK
2.1 Background
In the literature, most privacy-preserving schemes in the AMS sce-
nario relate to privacy in the context of electric consumption mea-
surement, and address privacy in conjunctionwith operational con-
trol measures or billing. A given AMS privacy-preserving scheme
may address one or both categories.

AMS privacy-preserving schemes are designed to be aligned
with characteristics such as

(1) Attribution
(2) Frequency

Attribution pertains to whether measurements are attributable to
a specific smart meter and user or not. Measurements must be at-
tributable for the utility to carry out billing, unless the billing is
carried out at the user side, for instance by trusted devices such
as trusted platform modules (TPM). As noted, attribution is not
necessary for operational control purposes. Attribution is equiva-
lent to the privacy properties linkability and unlinkability. There is
linkability when measurements are attributable to a specific smart
meter, and unlinkability when not. In the privacy literature, unlink-
ability (non-attribution) is a typical privacy goal.

Frequency refers to the frequency of measurements and report-
ing, such as coarse-grained and fine-grained. This is a rather condi-
tional and functional property that influences the degree of privacy
in cases where measurements are attributable.

2.2 Related work
As noted in the introduction, operational control measures do not
require attributable consumption reporting, while billing must be
attributable. These characteristics are somewhat contradictory, and
most papers that address AMS privacy address either privacy-pre-
serving operational control or privacy-preserving billing. In this

section, wewill briefly review some privacy-preservingAMS schemes
for both categories. For a survey, see for instance [5].

2.2.1 (Attributable) privacy-preserving billing. In theAMS scenario,
billing assumes fine-grained measurements. The overall privacy
goal is to give users assurance that their measurements are not
made attributable to the utility, while the utility does not neces-
sarily trust the end users. In the literature, essentially three ap-
proaches are proposed:

(1) Meter-side billing computation bymeans of trusted platform
modules

(2) Utility-side correctness verification ofmeter-side billing com-
putations by means of homomorphic cryptographic com-
mitments

(3) Utility-side billing computation by means of a trusted third
party

User privacy is obtained as long as measurements are not attrib-
uted to the user. The two first approaches suggest billing computa-
tion at the smart meter, which hides measurements from the utility.
Privacy is therefore assured, but requires that the billing computa-
tions are correct (i.e., assurance that the user did not cheat) and
that the transmission of the billing amount is secure. In the third
approach, attributable measurements are disclosed, but by sending
them to a TTP that does not reveal them to the utility, privacy is
obtained with regard to the utility.

Petrlic et al. [6] proposed to use trusted platformmodules (TPM)
integrated in smart meters for billing computation. No measure-
ments are sent from the meter. The goal is to ensure the utility
that the billing operations are correctly carried out, since the util-
ity does not necessarily trust the users. This requires that price
information must be securely transmitted from the utility and that
the resulting amount information is securely transmitted from the
TPM to the utility.

Billing computation correctness verification pertains to meter-
side billing computation when no TPM is used, and is based on
cryptographic commitments. As before, the goal is to ensure the
utility that the billing operations are correctly carried out, since
the utility does not necessarily trust the users. Instead of sending
measurements to the utility, the smart meter provides a proof (i.e.,
a commitment) to the utility for each measurement value, without
revealing the actual measurement. At the end of the billing period,
themeter computes and sends the billing amount to the utility. The
already received commitments act as proof that the bill was com-
puted correctly, providing assurance that the user did not cheat.
Hence, the received billing amount is verifiable to the utility.

The idea is that for eachmeasurement c , the smart meter sends a
commitmentC that is computed from c and a secret random value
r . Given a commitmentC it is hard to compute c and r . At the time
of billing, the smart meter computes and releases the dot-product
r ′ of the random values and tariff vector. Due to homomorphicisms
of commitment schemes, the utility uses r ′ conjunction with each
commitment C and the tariff vector to verify that the billing price
is correct. Commitment-based billing schemes are proposed in [7]
and [8].

Billing could alternatively be carried out by the assistance of a
trusted third party (TTP). A straight-forward variant is that the
smart meters authenticate and forward their consumption values



Temporal anonymity in the AMS scenario without a TTP ECSA ’18, September 24–28, 2018, Madrid, Spain

to the TTP, which then computes the charging price that it for-
wards to the utility. Efthymiou et al. [3] proposed using a TTP for
both billing and operational control measures. Each smart meter
is assigned two distinct long-term identifiers — one anonymous
identifier (pseudonym) for fine-grained (high-frequency) measure-
ment reporting and one non-anonymous “regular” identifier for
coarse-grained (low-frequency) measurement reporting. Since the
TTP that knows the mapping between these two identifiers, the
TTP becomes a focal point of trust, with disadvantages such as
vulnerability to insider threats.

2.2.2 (Non-attributable) privacy-preserving operational control. The
following approaches have been proposed for privacy-preserving
operational control:

(1) Privacy-preserving aggregation
(2) Group signatures
(3) TTP (pseudonyms)

The overall privacy goal is to give users assurance that their mea-
surements are not made attributable to the utility. Non-attribution
requires that there must exist a number of possible meters that
measurements can originate from, which is related to the terms
anonymity sets and anonymity networks. As previously noted, an
other suggested approach is including an online trusted third party
that both users and utility trust in.

A secondary goal that is sometimes not explicitly highlighted
in the privacy literature, is to provide the utility assurance that re-
ceived measurements are authentic. Schemes that assume anony-
mity sets, such as privacy-preserving aggregation schemes and
group signatures, may give the utility assurance thatmeasurements
(or sums of measurements) originate from a confined group of
users. In this paper, this property is addressed in Section 3.2 un-
der authenticity and unforgeability.

Privacy-preserving aggregation schemes are secure-sum schemes
that are non-attributable and that provide consumption aggregates
from groups of smart meters. Aggregation schemes should assure
privacy despite certain numbers of colluding parties, including the
utility. There are mainly two types of privacy-preserving aggrega-
tion schemes:

(1) Distributed/partial aggregation
(2) Centralized aggregation

Distributed aggregation refers to that each smart meter randomly
splitsmeasurement values and distributes the partialmeasurements
to the other meters, so that eachmeter computes a partial sum. The
partial sums are eventually transmitted to the utility [9–11] or to
the other meters [12] that compute(s) the total sum by aggregating
the partial sums. The mentioned aggregation schemes use homo-
morphic encryption such as the Pailler scheme as a cryptographic
primitive. A problem is that such schemes generally do not explic-
itly give the utility authenticity assurance, which makes them sus-
ceptible to attacks such as replay attacks unless relevant security
measures are taken, for instance by digital signatures or message
authentication codes (MAC).

In centralized privacy-preserving aggregation, only a central-
ized entity such as the utility carries out the sum computation.
Since it is not trusted, the measurements are encrypted in such
a way that the utility is unable to obtain individual measurements.

In the scheme of Joye et al. [13], the secret key of the utility is
randomly split into n secret shares that are unknown to the utility,
andwhere eachmeter holds a share that it uses to encryptmeasure-
mentswith. Due to its homomorphic property, the utility computes
the sum using its secret key. Since the scheme assumes a fixed
group of meters, joining or leaving meters require a full key/share
redistribution for all meters. The scheme in [14] overcomes this
disadvantage, but requires a trusted third party. Both schemes em-
ploy timestamps and have therefore non-reusability/freshness as-
surance.

Group signatures provide proof that the signer is associatedwith
a group, but does not reveal the identity of the signer. Group sig-
nature schemes have a feature that allows a group manager to re-
veal the original signer. For the purpose of operational control mea-
sures, group signatures provide unlinkability for smart meters that
continually transmit fine-grained measurements to a utility [15,
16]. Group signatures can also be used for billing, but then the
utility’s billing center has the authority to reveal signers [17], in
which case the billing center has the equivalent role of a trusted
third party and becomes a focal point of trust. Another downside
is that group signatures are computational intensive.

Some authors propose using pseudonyms as a means for anony-
mization and privacy [18]. In order for a pseudonym to be trustable,
it must be verifiable. This could be realized by anonymous certifi-
cates, which requires a trusted third party. Schemes using anony-
mous certificates are found in [3, 6]. Downsides are that this re-
quires a trusted third party that knows the pseduonym/meter-rela-
tion, and that certificate-based pseudonyms are static, which may
cause weakened unlinkability. Another disadvantage is that cer-
tificates requires asymmetric cryptography which is considerable
more computational intensive than symmetric cryptography.

3 THREAT MODEL AND PROPERTIES
In this section we introduce a threat model, which is essential to
what properties are necessary to for the scheme These properties
are then introduced next. The goal is a scheme that is resistent to
these threats.

3.1 Threat model
The main goal is to preserve user privacy with regard to the utility.
This is a privacy goal that is asymmetric, since the utility does not
submit personal information to the users. In the metering scenario,
a possible threat is that some users may attempt to cheat their elec-
tricity suppliers. Since the utility requires correct measurements, a
second goal is to assure the utility that measurements are authen-
tic considering cheating users or adversaries. Threats we consider
relevant are:

• Honest-but-curious utility
• Dishonest users
• External adversaries

We assume an honest-but-curious utility that do not deviate from
the defined protocol, but will attempt to learn all information pos-
sible from the received messages. Smart meter systems rely on
wireless communication, which constitutes an insecure commu-
nication channel. An advanced user may therefore be capable to



ECSA ’18, September 24–28, 2018, Madrid, Spain Sigurd Eskeland

replay former messages or to create valid messages with false con-
sumption values for the purpose of cheating the utility. This is
equivalent with an active external adversary that is able to mod-
ify messages that are in transmission.

We assume that cryptographic keys are securely stored in the
smart meter and are inaccessible to any user (or adversary) w.r.t.
reading and writing.

3.2 Privacy properties
Anonymity is the state of being not identifiable within a set of sub-
jects. Anonymity may be defined as unlinkability between an iden-
tifier of a subject, that is a sender, and the messages that are sent
by that subject. More specifically, we can describe the anonymity
of a message such that it is not linkable to any identifier, and the
anonymity of an identifier as not being linkable to anymessage [2].

Temporal unlinkability This is a privacy property that pre-
vents that measurements can be attributed to specific smart
meters until a given time. At the end of the billing period
and at the behest of the smart meter, the utility is given
the capability to attribute measurement messages to the cor-
responding smart meters. The measurements remain non-
attributable to any other party than the utility.

Authenticity and unforgeability At the end of the billing
period, the utility must have assurance that each measure-
ment message is authentic. An authentic message has the
following characteristics:
• It originates from the alleged meter
• It has not been altered
To achieve this, the authentication mechanism must be un-
forgeable.

Non-reusability/freshness Assurance that a measurement
message is unique and recent.

Integrity protection is a security measure that provides integrity,
i.e., a means of detecting if messages have been altered by an adver-
sary during transmission.2 Message authentication (also known as
data origin authentication) is the property of assurance that a given
entity is the original source of received data. Message authentica-
tion gives assurance of data integrity, but not the otherway around.
This is because that if there is no data integrity assurance then we
cannot be sure that data received has not been changed by an at-
tacker in transit and it would not be possible to have any assur-
ance about the originator of the data. See for instance Martin [19,
Chapter 1.3]. The authentication mechanism must be unforgeable
to prevent a user or an adversary from computing cryptographi-
cally valid authentication codes for false measurement messages.

Message authentication codes (MACs) and digital signatures are
generic authentication mechanisms that allow a recipient to cor-
rectly verify the originator. These security measures alone do not
provide assurance of the recentness or freshness of received mes-
sages, which is necessary to prevent replay attacks.

Non-reusability/freshness is the assurance that a message orig-
inated recently from an authenticable smart meter at the time it
was received. This gives assurance against replay attacks and that a

2Since digital messages are merely bit sequences, these measures do not prevent al-
teration of data, but provide a means of detecting intended (or unintended) message
altering.

message is new and not used before, and assumesmeasures such as
nonces, counters or timestamps in conjunction with an authentica-
tion mechanism. This is equivalent to entity authentication, which
is normally associated with cryptographic protocols for user au-
thentication and key establishment, andwhich is assurance of “live-
ness” — that a given entity is currently active in a communication
session.

A common security property is confidentiality, which is assur-
ance that data cannot be viewed by an unauthorized entity that
may be eavesdropping on communications. This is not addressed
explicitly in this paper, which focuses on privacy. However, due
to the temporal unlinkability privacy property, it is prevented that
communicated measurements can attributed to specific smart me-
ters, except to the utility at billing time. Confidentiality is in this
regard weakly provided. Utilizing cryptographic measures such as
public key encryption provide confidentiality.

4 THE TEMPORAL ANONYMITY AMS
SCHEME

4.1 Protocol specification
The scheme has two phases — installation and operation. The in-
stallation phase may refer to the time of production or the time
of roll-out, when long-term cryptographic keys are stored at the
smart meters.

Installation. Each smart meter SMi and the utility U preshare a
long-term secret symmetric key kiU .

Operation. The operational phase constitute recurrent sessions that
each equals a billing period T and that has a duration of, for in-
stance, onemonth. Each session has an initial step followed by fine-
grained measurement reporting at fixed time intervals 1 ≤ t ≤ p,
for instance every hour, where t is a counter or a timestamp, and
p is the number of intervals of each periodT . The billing period is
completed by a billing computation step.

In order to complete billing computation at the end of T , it is
necessary that the utilityU continuously stores all the messages it
receives during T in a measurement table.

In order to have anonymity, there has to exist an anonymity set,
which is the set of all possible subjects. The larger an anonymity
set is and the more evenly distributed that the members of that
set are, the stronger is the anonymity [2]. In the AMS context,
an anonymity set is a group of smart meters that report to the
same utility, which assumes that each smart meter is assigned an
anonymity set. The measurement table is consistent with a anony-
mity set, and the size of the anonymity set would therefore deter-
mine the size of the measurement table.

In practice, the group of smartmeters corresponding to an anony-
mity set could be those that are associated and communicates with
a concentrator. The concentrator is an intermediate communica-
tion point that forwards messages between a cluster of smart me-
ters that are within radio range of the concentrator, and the util-
ity’s head-end system.

Initial step. At the start of each new billing periodT , each smart me-
ter SMi randomly generates a secret temporary anonymity token
atiT , which applies to that billing periodT only. Each message that
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SMi sends is identified by a unique non-attributable message iden-
tifier midit . All non-attributable message identifiers are deduced
by means of the temporary anonymity token atiT in conjunction
with a hash function (cf. Eq. 1).

Measurement reporting. At each time interval t , 1 ≤ t ≤ p, each SMi
reports the current measurement to the utility. First, it computes
the non-attributable message identifier

midit = h(atiT , SMi , t ,T ) (1)

where h denotes a secure hash function. Since hash functions have
a oneway security property, it is prevented that the secret anonymity
token atiT can be revealed given the pertaining non-attributable
message identifiersmidit .

The SMi sends the message

SMi → U : midit , cit , t ,acit (2)

to U , which stores it in the measurement table, and where cit is
the consumption value and acit = h(atiT ,midit , cit , t ,T ) authen-
ticates the message contents. Note that since this message is not
attributable, it contains no information about the sender.

Billing computation. At the end of the billing period T , the utility
needs to attribute each measurement received duringT to the per-
taining smart meter. To do this SMi encrypts and sends atiT , as

SMi → U : SMi ,EkiU (SMi ,T ,atiT ) (3)

to U , where E denotes encryption using a secure symmetric cryp-
tographic algorithm. Since kiU is shared by onlyU and SMi , upon
decryptionU gets assurance that the message originated from SMi
and applies to the billing period T .

By means of atiT , the utility U computes

mid′it = h(atiT , SMi , t ,T ) for 1 ≤ t ≤ p (4)

and searches for these values in the measurement table. For each
match, i.e.,mid ′it =midit , the utility marks the corresponding en-
try with SMi as the originator.

Next, the contents of each received measurement message must
be authenticated. The utility computes the authentication code

ac ′it = h(atiT ,midit , cit , t ,T ) (5)

using atiT , and checks whether ac ′it = acit . A match indicates that
the measurement message is authentic and that it originated from
SMi at time interval t during billing period T .

When all entries in the measurement table linked to SMi have
been identified, the utility computes the amount bT to be charged
for that period. This computation is a dot-product of the measure-
ment vector c and the tariff rate vector r:

bT = c · r =
p∑
t=1

cit rit (6)

where rit is the tariff rate for SMi at time t .

4.2 Notes
The non-attributable message identifiersmidiT reference each con-
sumption message (cf. Eq. 2). When SMi releases the temporary

anonymity tokens atiT by the end of the pertaining billing pe-
riod T , the utility is able to correlate the pertaining messages that
it has received during T to SMi in order to compute the bill.

This should not be confused with cryptographic commitments,
e.g. [20], which are a means for verifying the correctness of a com-
putation that was carried out by some other entity when releasing
a decommitment value. Another significant difference is that com-
mitments are homomorphic, and have no identifying and authen-
ticating properties.

It could be pointed out that temporary anonymity tokens are
somewhat similar in nature to pseudonyms. A difference is that
pseudonyms are normally public, while the anonymity tokens are
secret and eventually revealed to the utility. Another difference is
that pseudonyms are usually static, while the anonymity tokens
have temporal applicability.

4.3 Security analysis
The scheme is based on the following cryptographic hardness as-
sumptions:

(1) The pre-image resistance property of hash functions assures
that given a hash value h′ it is difficult to find any inputm,
where h′ = h(m).

(2) The following hardness properties of a secure symmetric
cryptographic algorithm E are relevant for the scheme:

(a) Resistance to known plaintext attacks assures that given
a plaintext m it is not possible to find the ciphertext c ′,
where c ′ = Ek (m).

(b) Given an adversary that has a number of plaintexts/cipher-
texts encrypted by the same key. Resistance to known ci-
phertext attacks assures that given another ciphertext c ′ it
is not possible to find the plaintextm or the secret key k ,
where c ′ = Ek (m).

A presupposed security assumption that should be pointed out is
that temporary anonymity tokens atiT must be random in a suf-
ficiently large search space. If not, an attacker could successfully
find atiT by brute-force searches which would break the scheme.

The following shows the how the privacy properties stated in
Section 3.2 are ensured in agreement with the stated hardness as-
sumptions.

Temporal unlinkability. Each measurement message (cf. Eq. 2)
are broadcasted and can be known by any eavesdropper. It con-
tains the message identifiermidit that is computed from the ran-
domly selected temporary anonymity token atiT , which is only
known by the smart meter SMi until it is securely released to the
utility U at billing time (Eq. 3). Since atiT is random, successful
brute-force searches are prevented. Therefore, in agreement with
hardness assumption 1, it is prevented that the hash function input
corresponding tomidit , i.e., (atiT , SMi ), can be revealed given any
number of pertaining anonymous message identifiers midit . It is
therefore prevented that measurement messages can be associated
with SMi given that atiT is unknown. Temporal unlinkability is
therefore assured.

Authenticity and unforgeability. At billing time, the utilityU de-
crypts the ciphertext received in Eq. 3 using kiU , and obtains (SMi ,
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T ,atiT ). The ciphertext, which contains the temporary anonymity
token atiT , is authentic if SMi is valid and T is as expected.

Due to the randomizing property of hash functions, each non-
attributablemessage identifiermidit has high entropy and is equiv-
alent to an unpredictable, pseudo-random value. By means of atiT ,
the utility restores each pertainingmidit . Looking up these values
in the measurement table, each match identifies the correspond-
ing measurement messages that have been sent by SMi during
the billing period T . Due to the high entropy, the probability of
false matches is negligible (cf. hardness assumption 1). A match-
ing midit value found in the measurement table means that it is
therefore authentic.

Lastly, by means of atiT and acit , the utility is able to authenti-
cate measurement messages with regard to (midit , cit , t ,T ).

Consider the following possible attack cases:

(1) Given a number of measurement messages (cf. Eq. 2) for a
given billing period T and SMi , a user or adversary could
attempt to obtain atiT for each (midit ,acit ) of those mes-
sages. If successful, the user could subsequently submit al-
tered measurement messages to the utility having crypto-
graphically valid (mid ′it ,ac

′
it ) based on atiT .

Since atiT is random and has a high entropy, it is prevented
that atiT can be revealed given any number of (midit ,acit )
by brute-force searches and in agreement with hardness as-
sumption 1.

(2) Given a measurement message (cf. Eq. 2), a user or adver-
sary could attempt to replace it by a partly modified mes-
sage whose modified content agree with the authentication
code acit of that message.
According to hardness assumption 1, the pre-image resis-
tance property of hash functions assures that given a hash
value h′ it is difficult to find any inputm, where h′ = h(m).
Therefore, this attack is prevented.

(3) A user or adversary could select an arbitrary at ′iT , whereof
he or she can deduce cryptographically valid (mid ′it ,ac

′
it ) in

order to submit fake measurement messages to the utility.
Not knowing the secret keykiU , the userwould then have to
compute a cryptographically valid ciphertext EkiU (SMi ,T ,
at ′iT ) in agreement with Eq. 3, containing a valid identifier
SMi , a valid timestamp T and that at ′iT . This attack is pre-
vented in agreement with hardness assumption 2a.

In agreement with the hardness assumptions of the cryptographic
algorithms, the utility is therefore assured that the pertaining mea-
surement messages originate from SMi and pertains to the time in-
terval t of billing periodT . Hence, authenticity and unforgeability
is assured.

Non-reusability/freshness. This is assured in agreement with the
previous analysis (authenticity and unforgeability) by means of the
timestamps/counters t ,T .

Since kiU is shared by only the utility and SMi , it is prevented
that the temporary anonymity tokenatiT can be disclosed to eaves-
droppers — in agreement with hardness assumption 2b. This con-
fines the knowledge of specific users’ consumption to the utility
only.

5 CONCLUSION
Fine-grained consumption measurements provide increased oper-
ational monitoring and control and more precise billing, but con-
stitute an invasive factor into the privacy of the consumers. In this
paper, we have proposed a two-party privacy-preserving crypto-
graphic scheme that addresses operational control measures and
billing jointly. In contrast, the privacy-preserving AMS schemes
in the literature tend to address these two categories disjointly —
possibly due to their somewhat contradictory characteristics.

Electricity consumption data are rather transitory in nature and
may therefore only carry limited sensitivity or have even no in-
terest as time passes. Measurements that are non-recent do not
reveal current actions and activities in households. AMS measure-
ment sensitivity is therefore limited by a time factor. The proposed
scheme assures that fine-grained consumption measurements are
non-attributable during the billing periods. By the time of billing,
the reported measurement values are made attributable at the util-
ity by action of the smart meter, and are then eligible for billing
computation. This assures user privacy within a periodical basis.

The proposed scheme is computationally efficient as it is based
on symmetric cryptographic primitives. No online trusted third
party is required.
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