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1 Introduction

The aim of flood frequency analysis is to estimate the streamflow quantiles, or design
floods, for given exceedance probabilities or return periods, e.g. the 100-year flood. The
design flood estimation forms the basis for hazard management related to flood risk and
is a legal obligation when building infrastructure such as dams, bridges and roads close
to water bodies. Flood inundation maps used for land use planning are also produced
based on design flood estimates. The streamflow quantile estimates required for these
applications might range from estimates of the mean annual flood to quantiles higher
than the 1000-year flood.

The estimation of design floods is influenced by a range of uncertainties. Traditionally,
three important sources of uncertainty are the uncertainty in the choice of a model or a
distribution, the estimation uncertainty due to a small data sample, and the uncertainty
in flood observations. Furthermore, the observation uncertainties contribute in a two-
fold way since the observations are used both for estimating and evaluating the statistical
model. In this paper, we investigate how such uncertainties influence the resulting design
flood estimation with a focus on the data-related sources of uncertainty.

Applications commonly require design flood estimates for return periods longer than
the sample size, resulting in estimates that are based on a large degree of extrapola-
tion. This is one of the main contributors to a large sample uncertainty and estimates
that are sensitive to the particular data used for the estimation, with large and highly
skewed uncertainty bounds. To improve the robustness of design flood estimates, lin-
ear moment estimators (e.g. Hosking et al., 1985), penalized maximum likelihood (Coles
and Dixon, 1999; Martins and Stedinger, 2000) and Bayesian model formulation with
informative priors (e.g. Renard, 2011) have been proposed. The estimation uncertainty
was originally assessed using asymptotic theory for the maximum likelihood under a
normal approximation (e.g. Madsen et al., 1997; Rosbjerg and Madsen, 1995). However,
resampling methods such as bootstrap or jackknife better account for the skewness of
the uncertainty bounds (e.g. Engeland et al., 2005; Hall et al., 2004; Kysely, 2008). More
recently, Bayesian methods have been used to estimate uncertainty intervals as well as
the predictive distribution of the flood quantiles (e.g. Lee and Kim, 2008; Renard et al.,
2013, 2006).

Recently, estimation of uncertainties in streamflow data has received an increased atten-
tion in the literature, see Coxon et al. (2015), Di Baldassarre and Montanari (2009), Le Coz
et al. (2014), Moyeed and Clarke (2005), Reitan and Petersen-Overleir (2009, 2011) and
Westerberg et al. (2011). Streamflow observations are derived from water level measure-
ments by using a rating curve model to translate the measured water level to streamflow.
Consequently, uncertainties in streamflow data stem from two sources. A random uncer-
tainty relates to the accuracy of the water level measurements while uncertainty in the
rating curve model translates into a systematic, or correlated, uncertainty in the output
(Neppel et al., 2010). We will focus on this latter source of uncertainty.
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In a natural river profile, the rating curve model is estimated using regression-like tech-
niques based on simultaneous measurements of streamflows and water levels using a
power law model with one or several profile segments or water level intervals. Impor-
tant sources of uncertainty include random errors in the streamflow measurements and
systematic errors related to the specification of the model, that is, the method for extrapo-
lating beyond the observations as well as the inclusion of seasonality, temporal drift and
step changes in the water level /discharge relationship (Coxon et al., 2015). In particular,
the extrapolation uncertainty might be large since it is not possible to know whether the
model should include a new segment beyond the observed values (Lang et al., 2010; Rei-
tan and Petersen-Dverleir, 2009). For this reason, Le Coz et al. (2014) use hydraulic mod-
eling to aid the extrapolation. Temporal changes can be caused by erosion or deposition
of river sediments, or a seasonal effect due to vegetation growth in summer and/or ice in
winter. In Norway, the effect of ice is a major modeling challenge and the streamflow data
influenced by ice are systematically adjusted (ice-reduced). The changes in river profile
is accounted for by using different curves for different periods or by estimation non-
stationary rating curve models (Reitan and Petersen-@verleir, 2011). Petersen-Overleir
et al. (2009) show that for 581 gauging stations in Norway, more than 93 % of the rating
curves have a relative uncertainty of 10 % or larger for high flows.

In hydrological modeling there is an increasing attention to explicitly accounting for dif-
ferent sources of uncertainty. The effects of uncertainty in streamflow observations have
been investigated in the context of precipitation-runoff modeling (e.g. McMillan et al.,
2010) and in the estimation of hydrological indices and signatures (e.g. Clarke, 1999;
Clarke et al., 2000; Westerberg and McMillan, 2015). For flood frequency analysis, the
observational uncertainty is commonly estimated separately (Kuczera, 1996; Lang et al.,
2010; Neppel et al., 2010) while one study performs an integrated analysis where the rat-
ing curve parameters and the flood frequency distribution are estimated jointly (Petersen-
Dverleir and Reitan, 2009). This study concludes that the rating curve error has an impor-
tant influence on the quality and the variance of the quantile estimates. Furthermore, the
systematic errors caused by the rating curve model might have a larger influence on the
resulting quantile estimates than random errors in water level observations (Lang et al.,
2010; Neppel et al., 2010).

The results discussed above demonstrate that it is important to account for rating curve
uncertainty in flood frequency estimation, and we believe there is a need to better un-
derstand both the marginal and the joint effects of sample and rating curve uncertainty.
Furthermore, it is essential to assess the importance of critical data when estimating flood
quantiles, i.e. to assess the added value of streamflow measurements during high floods.
Such measurements may reduce the extrapolation uncertainty in the rating curve model
and, subsequently, reduce the uncertainty of design flood estimates. To gain a better in-
sight into the effect of sample and rating curve uncertainties in flood frequency estima-
tion, we aim to answer the following research questions:

(i) How large is the contribution of the sample uncertainty and the rating curve uncer-
tainty, individually and combined, when estimating design floods?

Progagation of rating curve uncertainty in design flood estimation m% 5



(ii) What is the effect of length of the annual maximum series on the design flood esti-
mation uncertainty?

(iif) What is the added value of large streamflow measurements at the high end of the
rating curve and in the annual maximum data series?

The remainder of the paper is organized as follows. A description of the rating curve
model and the techniques used for the flood frequency estimation is given in Section
2. In the next Section 3, data and results for seven gauged catchments in Norway are
presented. The paper closes with a discussion in Section 4 and details of the estimation
algorithms are provided in the appendix.

2 Methods

We employ Bayesian inference techniques to investigate the uncertainty associated with
parameter estimation in statistical models for stage-discharge rating curves and the sub-
sequent flood frequency analysis. The general framework for such an analysis may be
described as follows. Denote the available data set by W = (wj,...,wy). The data is
assumed to be independent and identically distributed such that the likelihood, or the
sampling density, is given by
pOV|y) =[] plwi|v),
i=1

where v = (71, ...,7%) denotes the vector of unknown parameters.

The parameter vector - is associated with a prior distribution p(+y) and, subsequently, we
calculate the posterior distribution of the parameters given the data,

_ pW[¥)p(v)
P IW) = o T piy)dy

The posterior distribution is commonly not available in a closed form which requires
the use of e.g. Markov chain Monte Carlo (MCMC) simulation techniques (Robert and
Casella, 2004). The posterior distribution, either directly or as represented by a sample,
may then be used to infer the parameter uncertainty given the statistical model and the
data V. Similarly, we may use the information provided by the posterior distribution to
assess the uncertainty of the quantiles of the sampling distribution, or any other function
of the parameters.

Below, we outline the specific uses of this general framework for the rating curve model
of Reitan and Petersen-Overleir (2009) and for flood frequency analysis using the two
parameter Gumbel distribution and the three parameter generalized extreme value dis-
tribution.
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2.1 Stage-discharge rating curves

Observed streamflow data are usually given by stage measurements which measure the
water surface height at a gauging station. These data are then converted to discharge
using a stage-discharge rating curve. It is common to assume a power law relationship
between the stage h and the discharge (), that is,

0 if h < hg

Q= .
exp(a)(h — hg)® if h > hyo,
where hg is a cease-to-flow stage parameter and the parameters a and b determine the
shape of the rating curve. A more general model assumes that the profile of the river con-
sists of multiple segments with the shape of the rating curve changing for each segment.
Reitan and Petersen-@verleir (2009) consider a multi-segment model with log-normal

measurement errors. That is,

k
10g(Q) = Y 1{hs;1 < h < hy;} 1)

j=1
X (aj + bj log(h — hO,j)) + &,

where (Q, h) is a stage-discharge measurement, 1 denotes the indicator function, hs ;
determines the transition between segments j and j +1for j = 1,...,k — 1 with h,o =
—00, hg ), = co and £ ~ N(0, 0?). The parameters a; for j > 1 are determined by the first
segment a; and continuity from one segment to the next such that a; +b; log(hs j —ho ;) =

ajy1 + bj1log(hs; — hojt1)-

Reitan and Petersen-@verleir (2009) propose a Bayesian inference procedure for the model
in (1) which has been implemented as a part of the national hydrological database sys-
tem at the Norwegian Water Resources and Energy Directorate. Throughout, we refer to
this framework as the Bayesian multi-segment software or the Bayesian multi-segment
model. Denote by 8 the vector of regression parameters in (1), including the number of
segments £,

0:(kaala"'aak‘,blv"'abkv (2)

ho,--y hogs P, s hsp—1).

Given a set of training data D consisting of d pairs of stage and discharge measure-
ments, D = {(Q1,h1), ..., (Qa, ha)}, the Bayesian multi-segment software returns a sam-
ple 81, ... 0™ from the posterior distribution of the regression parameters, p(6|D).
The multi-segment model described here is used for inference within the stage-discharge
measurement set, while the process model in Reitan and Petersen-@verleir (2009) is used
for handling the extra uncertainty regarding new segments outside the measurement set.
Note that the number of segments, k, is sampled together with the rest of the regression
parameters. This sample, together with a set of annual maximum stage measurements
H = {h1,...,hr}, may then be used to infer a sample of annual maximum discharge
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values by setting

k
9 — exp (Zn{hgf;l < he <h)} (3)

j=1

fort=1,...,Tandi=1,...,n.

In addition, the Bayesian multi-segment software issues a single set of values Q= (Ql, e
which are considered the best estimate for the actual unobserved discharge. These val-
ues are based on a set of parameter estimates § given as the mode of the multivariate
posterior distribution p(8|D).

2.2 Modeling annual maximum discharge
The generalized extreme value (GEV) distribution is commonly used to model block max-
ima such as the annual maxima, see e.g. Coles (2001). Denote by y the maximum yearly
discharge () normalized by the catchment area A4, y = Q/A. We assume that y follows a
GEV distribution, y ~ GEV(u, &, §), with density

p(y|n = (1,5,€) = ra(y) ™ exp (—a(y)) (4)
where
ey — -VE
aly) = (1+&k(y —p)) ffE%O )
exp (—k(y — p)) if&=0

and (1 + éx(y — p)) > 0 for & # 0. The GEV distribution has three parameters that
in our parameterization are location 1 € R, inverse scale x € R4, and shape £ € R.
The distribution is often parameterized using the scale ¢ = 1/x rather than the inverse
scale (e.g. Coles, 2001). However, the current parameterization is common in Bayesian
contexts (Dyrrdal et al., 2015; Rue et al., 2009), and is chosen because derivations related
to posterior densities are considerably easier in this representation.

The tail behavior of the GEV distribution is driven by the value of the shape parameter
¢ and generally falls in three classes: the Fréchet type (( > 0) has a heavy upper tail,
the Gumbel tail (¢ — 0) is characterized by a light upper tail, and the Weibull type ({ <
0) is bounded from above. The shape parameter thus provides vital information on the
statistical properties of the discharge and is, concurrently, difficult to estimate because
of the involved parametric form of the density in (4) as a function of £. For this reason,
the guidelines for flood estimation in Norway (Midttemme et al., 2011) recommend the
use of the three parameter GEV distribution for local flood frequency analysis only if
50 or more observations are available at the location. For 30-50 observations, the two
parameter Gumbel distribution should be used, that is, the particular case in (4) and (5)
where £ = 0. For less than 30 observations, it is recommended to complement the local
data with regional information.
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We consider both the Gumbel distribution and the more general GEV distribution. That
is, under the GEV model we have n = (y, k,&) while for the Gumbel model, the pa-
rameter vector becomes 17 = (1, k). To assess the uncertainty in the parameter estima-
tion, we employ the Bayesian inference techniques described in the appendix. We de-
note by p(n|)) the posterior distribution under the best estimate for the rating curve
model, 6, resulting in the data YV = (§1,....97) = (QI/A, .. .,QT/A). Similarly, for

YO = ( P, . ,yr}i)) based on a rating curve model with parameters 8, we denote the
posterior distribution by p(n|Y®) for i = 1,...,n. To assess the combined uncertainty

of estimating both 8 and 7, we consider the mixture distribution

n

P 1Y) == > pm| ¥, ©

=1

where ) = {¥®}7_,. Note that this is an approximation of the marginal posterior distri-
bution of i given the data D and H,

p(n| D, H) = / p(n, 6| D, H)d6

- / p(n]6.H)p(6 | D)de.

Alternatively, to isolate the effects of the parameter uncertainty in the rating curve model
on the resulting flood frequency analysis, we employ a flood frequency estimation tech-
nique that returns a single best estimate. For ease of comparison with the Bayesian infer-
ence discussed above, we use maximum likelihood estimation for this purpose. That is,
we obtain a maximum likelihood estimate 7 for every data set Y in ) and use the
variability of #1), ..., 7™ to infer the effects of the uncertainty in the rating curve model
only. The overall model framework is illustrated in Figure 1.

2.3 Return levels

The goal of flood frequency analysis is usually to construct estimates of design floods for
given return periods. The return level z, associated with return period 1/7 is the quantile
of the sampling distribution that has probability 7 of being exceeded in a particular year.
For the GEV density in (4), it is given by

)

N LG R R G C R I A
’ p— k" 1log(—log(1l — 7)) if&E=0

which is the quantile function of the GEV distribution function for the quantile 1 — 7. For
the Gumbel model, the return level is given by the special case in (7) where { = 0. Given
a sample nM, ..., n(™ from p(n|Y) or p(n|Y) it is then straightforward to construct a

posterior sample z&l), o 2m)

from p(z, | ) or p(z, | ), respectively, using (7) by setting
0 = 40— (O€0) 1 1 - (~log(1 — 1)<

if € = 0 and similar for £ = 0.
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Figure 1. An overview of the modeling framework. D denotes the data used for estimating the
parameters 6 in the stage-discharge rating curve relation and # denotes the annual maximum
stage measurements. Given H and 6, we obtain ), the annual maximum discharge normalized
by the catchment area A. After estimating 7, the parameters of the flood frequency analysis, the
return value estimates 2, are obtained from the quantile function F~!(1 — 7; ) accounting for both
curve and sample uncertainty (left), curve uncertainty only (center), or sample uncertainty only

(right).

Our main focus is on the uncertainty assessment associated with the return level estima-
tion. As illustrated in Figure 1, the samples from p(z- | V) have a two-fold uncertainty as
they incorporate both the uncertainty related to the parameter estimation of the stage-
discharge rating curve (curve uncertainty) and the flood frequency analysis (sample un-
certainty), while p(z, | ) includes only the sample uncertainty and 502 based
on the maximum likelihood estimates 7", ..., 7™ includes only the curve uncertainty.
Given a sample 202 we may assess the uncertainty of the return level estimate
by calculating credible intervals, e.g. the 80% credible interval is given by the interval
(71, 72] where 10% of the sample are smaller than ~; and 10% of the sample are larger

than ~s.

10 m% Progagation of rating curve uncertainty in design flood estimation



3 Data

In order to investigate the three research questions stated in the introduction, we ana-
lyze data from gauging stations at seven unregulated catchments in Norway using the
methodology described in the previous section. All data were extracted from the national
hydrological data base at the Norwegian Water Resource and Energy Directorate.

- Atnasjg

Z Bulken

- Driva
Femundsenden

- Refsvatn

- Skarsvatn

‘55:,,“ «L'"l’ .
0 200 400 km B Tingvatn
[ L | 1 |

Figure 2. Map of Norway with the seven gauged catchments used in the analysis.

The locations of the catchments are shown in Figure 2, see also Table 1 for information on
the size of the catchment areas. We analyze two data sets from each gauging station. A
data set denoted by D consists of simultaneous stage and discharge measurements; this
data is used to estimate the parameters of the Bayesian multi-segment rating curve model
described in Section 2.1. The second data set, denoted by #, contains annual maximum
stage measurements which are transformed to normalized annual maximum discharge
values via the Bayesian multi-segment rating curve model before they are used as an
input in the flood frequency analysis described in Section 2.2.

The amount of available data and the time periods for which the annual maximum series
are available are listed in Table 1. As can be seen from Table 1, many of the annual max-
imum series have a few missing values. We have not accounted for this in our analysis.
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Table 1. Gauging stations, size of catchment areas (in km?) and data availability. | D| indicates the
number of stage-discharge measurements used for estimating the rating curve and the largest
discharge measurement in D is max(Q). || denotes the number of annual maximum stage mea-
surements used in the flood frequency analysis with max(@) the largest estimated discharge
value. Due to missing data, || might not equal the length of the data period. The extrapolation
degree indicates the percentage of values in the full data series from which # is derived that
exceed the largest value in D (in %) and the last column lists the number of estimated annual

maximum discharge values that exceed the largest measured value in D.

Annual Maximum

Station Area |D| max(Q)  Period 1| max(Q) Extrap. #(Q > Q)
Atnasjo 463 38 139 1985-2014 30 159 0.018 1
Bulken (I) 1092 64 368 1892-1990 97 598 0.177 29
Bulken (II) 1092 31 705 1991-2014 24 680 0.000 0
Driva 745 67 19 1936-2013 78 467 0.134 25
Femundsenden 1792 83 87 1909-2013 103 134 0.780 17
Refsvatn 53 31 54 1984-2014 30 53 0.000 0
Skarsvatn (I) 145 19 54 1985-2002 17 101 0.128 4
Skarsvatn (II) 145 33 55 2003-2014 11 60 0.085 2
Tingvatn 272 51 128 1995-2014 20 138 0.026 2

The stage measurements in the two data sets D and H may partly overlap for a given lo-
cation, indicating that discharge measurements were performed at the station during the
annual maximum flood. However, it is common that the largest observed stage values
exceed measurements for which corresponding discharge measurements are available,
requiring an extrapolation of the rating curve. Table 1 lists the extrapolation degree for
our data series which is given by the percentage of all available stage measurements at
the station requiring an extrapolation of the rating curve. Additionally, we list extrapola-
tion information for the particular data used in our analysis. For three stations (Bulken,
Driva and Skarsvatn), over 20% of the data used for the flood frequency analysis are
estimated by extrapolation.

For two stations, Bulken and Skarsvatn, two separate data series are listed. At Bulken,
structural changes to the river profile were performed in 1990, requiring a new rating
curve model. Similarly, the river profile changed in 2002 at Skarsvatn. For the subsequent
flood frequency analysis at these stations, we combine the two annual maximum series
and perform a single analysis.
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4 Results and discussion

4.1 Contribution of sample/curve uncertainty

To estimate the parameter uncertainty in the Bayesian multi-segment rating curve model,
we draw 10,000 MCMC samples from the posterior parameter distribution. Figure 3
shows the estimates for the annual maximum discharge at Bulken based on the Bayesian
multi-segment model. For the first data period, 1892-1990, approximately 30% of the data
points require an extrapolation resulting in high variability in the discharge estimates,
particularly for the largest floods. Furthermore, the credible intervals are highly skew
with a heavy upper tail. Conversely, for the second data period, 1991-2014, both stage
and discharge were measured during the largest floods, resulting in significantly reduced
uncertainty even though only about half as many data points are used for the parameter
estimation compared to the first data period, see Table 1.

1200

1000

Annual Maximum
800

600

i
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t«ﬂx M*m“wm**w

400

I fii
it e 4 { i
{

200

1900 1920 1940 1960 1980 2000
Year

Figure 3. Estimated annual maximum discharge (in 1000 //s) at Bulken from 1892 to 2014. The
black dots show the best estimate and the red lines indicate the 99.5% credible intervals for the
discharge values based on 10,000 MCMC simulations. Due to structural changes in the river
profile, two separate rating curves are estimated, prior to and from 1991.

As outlined in Figure 1, we use three different approaches to obtain design flood esti-
mates with uncertainty assessment. Firstly, for each sample (), for i = 1, ..., 10,000, we
obtain 3,000 MCMC samples from the posterior parameter distribution of the flood fre-
quency model (GEV or Gumbel) under the data Y. This results in a sample of 3,000,000
design flood estimates where both curve and sample uncertainty are taken into account.
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Secondly, we obtain a maximum likelihood estimate f](") for the flood frequency param-
eters under each data set Y. This results in a sample of 10,000 design flood estimates
where only the curve uncertainty is taken into account. For two stations, Driva and Fe-
mundsenden, it was not possible to obtain maximum likelihood estimates ﬁ(i) for all
data sets Y due to numerical issues. However, this affected less than 1% of the sam-
ples (72 samples at Femundsenden and 2 at Driva) and thus, does not affect the results
presented here. Using probability weighted moments rather than maximum likelihood
did not solve this issue. In a third approach, we obtain 10,000 MCMC samples from the
posterior parameter distribution of the flood frequency model for a single best estimate
of the normalized annual maximum series, ). For this approach we computed one mil-
lion design flood estimates from the posterior given ) where only sample uncertainty is
accounted for.

Figure 4 shows 80% credible intervals for design floods with return periods of 20, 200 and
1000 years under both the GEV and the Gumbel model for the three uncertainty settings
described above. The corresponding tables are given in Appendix B. As expected, the
credible intervals are generally considerably narrower under the two parameter Gumbel
model than for the three parameter GEV model. Furthermore, the difference in the design
flood estimates between the two models is directly linked to the estimates of the shape
parameter £ in the GEV model, cf. Figure 5. That is, { estimates centered around 0 yield
similar design flood estimates (Femundsenden, Refsvatn and Tingvatn in our data set),
when the bulk of the posterior distribution is above 0, GEV returns higher estimates than
Gumbel (Atnasjo, Driva and Skarsvatn) while the opposite holds when the bulk of the
distribution is below 0 (Bulken in our data set).

Overall, we obtain the largest uncertainty when both curve and sample uncertainty are
accounted for, see Table 2. The length of a credible interval for a return value under sam-
ple uncertainty ranges from 55% to 94% of the length of the corresponding interval un-
der combined curve and sample uncertainty for all the seven stations considered here.
For the Gumbel model, the relative difference between curve or sample uncertainty only
and combined curve and sample uncertainty is similar for six out of seven stations. At
Refsvatn, the curve uncertainty is very small compared to the other two settings; this is
also the only station with no rating curve extrapolation, cf. Table 1.

For the GEV model, the results are more sensitive to differences between the data sets.
We observe large sample uncertainty for stations which have less than 50 measurements
in ‘H (Atnasjo, Refsvatn, Skarsvatn and Tingvatn), for which the GEV model is not rec-
ommended (Wilson et al., 2011). We observe that a low extrapolation degree is connected
to a small shift in the posterior distribution of the { parameter when comparing those
estimated under sample uncertianty to those estimated under both curve and sample
uncertainty (Figure 5). This results in relatively narrow credible intervals for the floods
(Atnasjo, Refsvatn and Tingvatn). Similarly, for the longer data series (Bulken, Driva and
Femundsenden), the posterior distribution for £ is considerably sharper under the single
data set ) than for the mixture in (6).
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Figure 4. Estimated 80% credible intervals for return values with return periods of 20, 200 and
1000 years under curve uncertainty (light/dark green), sample uncertainty (orange/brown) and
both (light/dark blue) under the GEV (lighter colors) and the Gumbel (darker colors) models for
normalized annual maximum discharge. The best estimate for each instance is indicated by a
black line. The return values are given in the unit of I/s/km?.

Progagation of rating curve uncertainty in design flood estimation m% 15



Atnasjo Bulken

Jo s J

-1.0 -0.5 0.0 0.5 1.0 15 -1.0 -0.5 0.0 0.5 1.0 15

Driva Femundsenden

-1.0 -0.5 0.0 0.5 1.0 15 -1.0 -0.5 0.0 0.5 1.0 15

Refsvatn Skarsvatn

YN AN

-1.0 -0.5 0.0 0.5 1.0 15 -1.0 -0.5 0.0 0.5 1.0 15

Tingvatn

O GEV,0&n
O GEV,n

VAN

-1.0 -0.5 0.0 0.5 1.0 15

Figure 5. Posterior distributions for the shape parameter ¢ in the GEV model under sample uncer-
tainty (n) and both curve and sample uncertainty (6 & n).

16 m% Progagation of rating curve uncertainty in design flood estimation



At Skarsvatn, in particular, the combination of a considerable extrapolation of the rating
curve and a small sample size in H causes extremely large uncertainty for the combined
setting. This is made clear in Table 3, where Skarsvatn has the largest relative uncertainty
for all model cases. Noticeably, at Bulken, the curve uncertainty exceeds the sample un-
certainty. Here, H contains over 100 data points while the rating curve for the first part of
the series has a high extrapolation degree, see Table 1 and Figure 3.

Table 2. Ratio of 80% credible interval lengths for the 1000-year design flood. We compare, on
the one hand, curve uncertainty vs. both curve and sample uncertainty (8/0&n) and, on the other
hand, sample uncertainty vs. both curve and sample uncertainty (n/0&mn).

GEV Gumbel
Station % % % %
Atnasjo 028 094 0.57 0.81
Bulken 0.77 056 0.63 0.74
Driva 051 0.73 0.58 0.82
Femundsenden 0.65 0.67 0.62 0.75
Refsvatn 0.26 091 035 092
Skarsvatn 0.33 0.69 057 0.64
Tingvatn 045 0.78 0.55 0.80

Table 3. Ratios of 80% credible interval length and corresponding best estimate for the 1000-year
design flood under curve uncertainty (n), sample uncertainty (#), and both curve and sample
uncertainty (6 & n) in the GEV and the Gumbel model.

GEV Gumbel
Station 0 n 0&n 6 n 0&n
Atnasjo 056 220 236 019 029 034
Bulken 035 023 045 0.10 0.12 0.16
Driva 046 0.72 099 0.13 0.18 0.23
Femundsenden 0.31 0.38 0.60 0.13 0.13 0.19
Refsvatn 0.14 1.11 1.18 0.09 0.26 0.27
Skarsvatn 1.06 266 3.85 024 0.28 0.40
Tingvatn 020 082 093 0.18 0.27 033

4.2 Length of annual maximum discharge series

In order to investigate the effect of the length of the annual maximum discharge series in
‘H on the design flood estimation uncertainty, we focus on the data from Femundsenden,
where we have a long data series comprising 103 values derived from a single rating
curve model. We separately analyze the first 20 years of the series, the first 60 years and
the full series. The resulting return levels under the GEV model are given in Figure 6 with
a more detailed view of the results for return periods of 20 and 1000 years under both the
GEV and the Gumbel model shown in Figure 7.

(M
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Figure 6. Estimated return level curves at Femundsenden under the GEV model with 80 % credi-
bility intervals (dashed lines) under curve uncertainty (green), sample uncertainty (black) and both
(blue). The red lines show the 80 % credible intervals for the discharge values based on 10,000
simulations from the Baysian multi segment model with corresponding best estimates (red dots).

While there is a general tendency of decreased estimation uncertainty as we include more
data in the analysis, the opposite holds for the 1000 year return level in the GEV model
when only curve uncertainty is accounted for, see Figure 7. Due to extrapolation, there
is significantly larger uncertainty in the discharge estimation if the annual maximum
flood is unusually large. At Femundsenden, the estimation of the four largest discharge
values is considerably more uncertain that the estimation of the remaining values. These
floods occurred in 1927, 1944, 1967 and 1995. For any additional data period, we thus
also include more large values with a high degree of uncertainty. However, when sample
uncertainty is accounted for, this effect somewhat cancels out by the additional benefit
of having more data for the frequency analysis. The estimated level also changes as we
add more data under both models. These results indicate, in particular, that the GEV
distribution is not appropriate when only 20 data points are available for the parameter
estimation.

4.3 Added value of large measurements

Here, we consider the added value of large measurements, both at the high end of the
rating curve and in the annual maximum data series. For this, we study the latter part
of the data series from Bulken, the data from 1991-2014. Originally, D contains 30 mea-
surements which we compare to using a smaller data set D~ with the three highest stage
measurements removed. Similarly, we consider the full data set H as well as H~ com-
prising the data from 1991-2013, leaving out the large flood in 2014 (cf. Figure 3). The
resulting estimates and the associated uncertainty for 1000 year return levels are given in
Figure 8.

Without extrapolation of the rating curve, the curve uncertainty is minimal. This propa-
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Figure 7. Box plots of estimated return levels with return periods of 20 and 1000 years at Femu-
ndsenden, based on 20, 60 and 103 years of maximum annual discharge data under the GEV
(upper) and the Gumbel (lower) model. For each setting, we compare results under curve uncer-
tainty (8), sample uncertainty (n) and both (6&n).
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gates forward to a lower uncertainty for the combined setting, particularly for the Gum-
bel model which is the more appropriate model given the length of the annual maximum
series. An inclusion of the 2014 measurement in H, on the other hand, increases the re-
sulting estimation uncertainty. The reason is that this flood is exceptionally larger than all
other floods in this data set (cf. Figure 3), and the effect of increased sample size on reduc-
ing estimation uncertainty is more than compensated by the effect of larger variability in
H.

An additional effect is a significant shift: The 1000 year return level estimates are notably
lower without the 2014 observation to the extend that some of the estimates are below
the 2014 flood value. Similary, the estimates vary considerably for the three uncertainty
settings when the inference in the rating curve model is performed with D~. The best
estimate under curve uncertainty is higher than that under sample uncertainty. This may
be explained as follows: The discharge values for the highest stage measurements follow
highly skew distributions with heavy upper tails. The higher the stage, the more skewed
is the distribution for discharge. Consequently, several of the data sets Y1), ... )(10000)
include more high values than Y, and the distribution of annual maximum streamflows
becomes more skewed for several of the rating curves. This results in posterior parame-
ter distributions shifted towards higher values with heavy upper tails, cf. Figure 9, and
higher estimates of return levels. The effect of using D~ is less pronounced when we use
H~ (largest flood removed), since we then exclude one observations with a large associ-
ated uncertainty.

This numerical experiment with the data from Bulken, indicates that a direct streamflow
measurement at the highest flood peaks has the potential to improve both estimation bias
and estimation uncertainty for the return levels and is therefore a very valuable informa-
tion. On the other hand, one large observation in A that is based on an extrapolation of
the rating curve is the most challenging case. Accounting for rating curve uncertainties
then seems to result in a large over-estimation of return levels at Bulken. This effect might
be reduced if we perform a joint estimation of the parameters in the rating curve and the
distribution function since the estimation then would put more constraints on the likely
size of the largest floods. The challenge of high outliers in extreme data has been dis-
cussed in the literature, see e.g. (Hosking et al., 1985). In our study we used estimators
that are sensitive to outliers in data in order to expose the effect of data uncertainty on
estimates. For more robust estimates we could have included prior information.

5 Conclusions

In this paper, we investigate the propagation of rating curve uncertainty in design flood
estimation by combining results from a Bayesian multi-segment rating curve model and
Bayesian flood frequency analysis under the GEV and the Gumbel distribution. This al-
lows us to consider curve/sample uncertainty both separately and combined. Concern-
ing our original research questions stated in Section 1, we conclude that
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Figure 8. Box plots of 1000 year return level estimates at Bulken under the GEV (top) and the
Gumbel (bottom) model, based on combinations of a full training set D, a complete set of annual
maximum discharge #, a set D~ with the three highest measurements removed and a reduced
set #~ without the 2014 flood. For each setting, we compare results under curve uncertainty (0),
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(i) The sample uncertainty is generally the main contributor to uncertainty in design
flood estimation. However, curve uncertainty may play an important role when ex-
trapolation of the rating curve is necessary.

(ii) The sample uncertainty generally decreases with a longer data series. However, if a
new data point has an unusually large value, the opposite may hold.

(iii) An additional high direct streamflow measurement will reduce the extrapolation
degree and the rating curve uncertainty, and most likely reduce estimation biases
in the return levels. A high annual maximum flood observation might, if combined
with a large extrapolation degree, introduce estimation biases for return levels since
the estimation is based on combining two highly skewed distributions.

Compared to the full data base of all gauging stations on Norway, our data examples are
of good quality with fairly low extrapolation degree. Only the data from Femundsenden
is above the median extrapolation degree (0.4%) and all the data is below the mean ex-
trapolation degree (2%). It is thus likely that the curve uncertainty in the data used in this
study is somewhat lower than Norwegian data in general. We might therefore expect that
the effect of rating curve uncertainty for Norwegian data is, on average, more important
than we see in this study. However, it is unclear to which extend these results generalize
to other regions.

Our study can be extended in several ways. In the analysis, we have used non-informative
prior distributions for the model parameters. However, the use of informative priors can
improve the estimation uncertainty when additional information is available, see e.g.
Parent and Bernier (2002) and Reis and Stedinger (2005). In our context is seems partic-
ularly promising to include prior information directly on the return levels, see e.g. Coles
and Tawn (1996). Further, a single hierarchical model can be constructed to investigate
the combined curve and sample uncertainty following the structure given in Figure 1.
While this may be somewhat more appropriate from a statistical viewpoint and would
potentially lower the combined estimation uncertainty, we consider such a construction
outside the scope of the current paper.
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A Bayesian inference in flood frequency analysis

We use Bayesian inference to obtain posterior distributions for the flood frequency pa-
rameters specified in (4) and (5) via Markov chain Monte Carlo sampling (Robert and
Casella, 2004). In particular, we use a Metropolis-Hastings algorithm where each param-
eter in 7 is updated in turn. Assume we are analyzing the data set y. We update a param-
eter, say p, by drawing a new value p’ from a proposal distribution p(u | 1/, -) and accept
the proposal with the probability min{r, 1}, where

s p | e [ 1, -)
p(y | )p(p| p(pl i) (A1)

Here, p(y | 11, -) denotes the likelihood and p(y/ |-) the prior distribution, both of which
may depend on other parameters. The remaining parameters in n, v = logx and & are
then updated in a similar manner. We use a Gaussian prior distribution with mean jig = 0
and standard deviation oy = 100 for all three parameters.

The efficiency of the Metropolis-Hastings algorithm heavily depends on the choice of the
proposal distribution. We follow e.g. Dyrrdal et al. (2015) and Rue et al. (2009) and em-
ploy a Gaussian approximation to the log-posterior density as the proposal density. If we
write the marginal posterior distribution as p(1//|y, -) o exp(f(x')), a second-order Taylor
expansion around the current stage p is given by the Gaussian distribution N'(¢; /c2, 1/¢2),

where

(see Chapter 4.4 of Rue et al. (2009)). That is,

T
f(w) = Za—logp Yelp, -)
7 >——i+z‘121 el )
o) = 70 v aMQ og P Yt|lty-),

under the N (ug,0}) prior distribution. Similar calculations hold for v = logr and &.
Explicit formulas for the derivatives f’(-) and f”(-) are given below.

A.1 The case £ # 0
Set ay = 1+ &e¥(yr — p). For € # 0, we obtain

flu) = £ +eZat (E+1—a; %)

X
0 =1

f"<u>:——+ (€+1) 2”2% — a9,

t=1
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The derivatives for the log-inverse scale parameter, v = log(x), are

f,(V) _ _I/;IU’O +T
0

+g! iaf(at - D{a - €+ 1)},

v )=—f+£ 12% (e = 1)

t=1

e+ D -1 —¢a

Set €; = y+ — p. The first derivative for ¢ is given by

K0 4 Dy + Dy

where

Z{ { “Hog(ay) — (€ + l)e"etat_l}
Zf oy {e ot — €7 1log(at)}
The second derivative for ¢ is given by
1 . . . .
(€ = ——+Di+Dy+ D3+ Dy
0
with
T
= Zg_Q{e”eto@l — ¢t log(ozt)}
t=1
T
=S¢ teaa e+ (€4 Devaa;
t=1

T
Dy =3 0 e log(a)(2 — ¢ (o)
t=1
+ e”etoz;l(f_l log(ay) — 1)}

Dy = Zg e’ey S 1{5_1 log(ay) — (£ + 1)e" ey — 1}.
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A.2 Thecase ¢ =0
When ¢ = 0, we set a; = exp(—e”(y — i) and obtain

T

Fll) =20 e S (1)

X
0 t—1

1 T
f(p) = —*0 - EQVZO%
t=1

g

T
Fw) = =200 73 log(an) (1 — log(ay)

o0 =1

;&
' (v) = o0 + Zlog(at) (1 — s — arlog(ay)) .

t=1

B Return level estimates

Table B.1 lists the results also shown in Figure 4.
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Table B.1. The estimated 20, 200 and 1000 year return levels (in I/s/km?)

) for GEV and Gumbel

distributed data under curve uncertainty, sample uncertainty and the combined curve and sample
uncertainty. The corresponding 80% credibility intervals are given in parentheses.

30

m

==
==
~

Curve Sample Curve & Sample

Uncertainty Uncertainty Uncertainty
20 year return level
GEV
Atnasjo 257 (238,277) 266 (225, 357) 272 (227,368)
Bulken (1991-2014) 510 (503, 518) 533 (477 ,664) 531 (475 ,661)
Bulken 472 (455, 515) 473 (454, 498) 479 (451, 529)
Driva 421 (391, 457) 421 (384,478) 428 (378,507)
Femundsenden 60 (56, 63) 59 (56, 64) 60 (55,67)
Refsvatn 897 (864, 936) 923 (842,1099) 929 (837,1118)
Skarsvatn 567 (522, 662) 553 (465, 759) 607 (487,916)
Tingvatn 487 (456, 521) 496 (462, 575) 505 (455, 599)
Gumbel
Atnasjo 240 (222,260) 237 (213,267) 243 (214,281)
Bulken (1991-2014) 489 (481,497) 497 (462, 543) 495 (460, 541)
Bulken 491 (475, 514) 492 (471,517) 494 (466, 528)
Driva 397 (378,420) 396 (371, 430) 400 (368, 440)
Femundsenden 60 (58, 63) 60 (57,63) 60 (57,65)
Refsvatn 909 (878, 945) 920 (843, 1018) 921 (837,1027)
Skarsvatn 503 (473, 564) 482 (438, 540) 515 (454, 613)
Tingvatn 506 (475, 541) 509 (469, 564) 514 (463, 582)
200 year return level
GEV
Atnasjo 414 (351, 494) 455 (325,917) 456 (321,961)
Bulken (1991-2014) 705 (689,721) 764 (597 ,1387) 760 (594 ,1378)
Bulken 583 (557,702) 585 (548, 646) 602 (547,739)
Driva 666 (572,787) 655 (546, 861) 680 (531,977)
Femundsenden 79 (67, 86) 77 (70,90) 78 (66, 99)
Refsvatn 1152 (1092,1222) 1193 (998,1824) 1215 (1000, 1897)
Skarsvatn 1056 (899,1591) 1002 (680,2198) 1219 (742,3319)
Tingvatn 568 (521, 622) 580 (513, 821) 599 (510, 873)
Gumbel
Atnasjo 330 (302,361) 326 (288,375) 337 (289,398)
Bulken (1991-2014) 603 (593, 613) 617 (560, 692) 614 (557, 689)
Bulken 654 629, 690) 657 (623, 696) 658 (615,713)
Driva 550 (519, 589) 549 (507, 603) 556 (503, 622)
Femundsenden 80 (76, 85) 79 (75, 85) 80 (74, 88)
Refsvatn 1200 (1154,1252) 1217 (1092,1378) 1222 (1087, 1393)
Skarsvatn 678 (631,782) 645 (573,741) 700 (601, 864)
Tingvatn 637 (588, 692) 643 (578,732) 651 (569, 762)
1000 year return level
GEV
Atnasjo 559 (431,742) 647 (396, 1819) 635 (382, 1900)
Bulken (1991-2014) 883 (853,915) 988 (676, 2516) 983 (672,2499)
Bulken 646 (613, 837) 649 (596, 744) 676 (596, 899)
Driva 882 (711,1114) 857 (660,1273) 904 (637,1527)
Femundsenden 92 (73,101) 89 (77,111) 90 (872, 1269)
Refsvatn 1316 (1233,1418) 1374 (1064,2591) 1406 (1071,2732)
Skarsvatn 1639 (1309, 3053) 1529 (850,4922) 2014 (954, 8691)
Tingvatn 612 (554, 679) 628 (531, 1045) 650 (530, 1139)
Gumbel
Atnasjo 393 (358,431) 388 (340, 452) 402 (341, 480)
Bulken (1991-2014) 682 (670, 694) 700 (629,797) 696 (624, 793)
Bulken 767 (736, 813) 771 (728,821) 772 (717, 842)
Driva 656 (617, 705) 655 (602, 724) 663 (595, 749)
Femundsenden 93 (88, 100) 93  (87,100) 94 (86,104)
Refsvatn 1401 (1345,1465) 1422 (1265,1627) 1429 (1259, 1650)
Skarsvatn 800 (741,932) 758 (666, 881) 829 (703, 1043)
Tingvatn 728 (666,797) 735 (653, 849) 746 (643, 888)

Progagation of rating curve uncertainty in design flood estimation
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