



### Background

- ► The analysis of time series of remote sensing images require that the images are co-registered.
- Manual co-registration is tedious.
  - Automatic techniques exist, but:
    selection of the right technique depends on the application and the image specifics.
  - and a single registration technique will generally not be sufficient when handling a range of images.
- For a user that needs to work on different types of time series, it would therefore be useful to have a more general tool for image registration.

#### 

NR Regnesentrat

## Projects

- MIR (April 2004 June 2005)
  Initial development of methods and software
- MIR extension (Nov 2006 March 2009)
  Validation, improvement and extension.
  - Incorporation in KEO

NR Regnesentral

# The MIR approach

- The MIR system consists of:
  - A library of registration algorithms
    combined with
  - Methodology enabling automatic algorithm selection based on image characteristics.
- The approach is based on supervised learning
- It is made locally adaptive by using a regionbased strategy.

## Automatic algorithm selection

- Region-based feature extraction
  - Divide images into regions
- Extract region features
- Performance prediction
  - For each region, predict the registration performance for each of the available algorithms.
- Region and algorithm selection
- Select the regions to be used
  - Select the algorithm to be used for the selected regions.

#### NR

### **Feature extraction**

- Features are extracted from a pair of regions

- Features are selected to say something about: ►
- The information content in the region Difference between master and slave For this a set of features based on image ►
- texture and image statistics have been selected
- These are merged into a joint feature vector. ►



#### 



#### **Performance prediction** A neural net is used to predict the Features: ۲ performance of the different registration $\mathsf{X} = [\mathsf{x}_1, \, \dots, \, \mathsf{x}_N]$ , algorithms from the features. The net is defined as follows: Performance prediction N input nodes (N = nof features) One layer of hidden nodes M output nodes (M = nof algorithms) The net is pre-trained on features from a large set of image/region pairs with known geometric displacement. Scores $S = [s(m_1), .., s(m_M)]$ NR

#### Library of algorithms MIR works on top of a set of existing registration algorithms. ► The set consists of a selection of algorithms from the itk/Insight library. Open-source software toolkit for image registration and segmentation. We define a registration algorithm as a combination of a metric and an optimizer. 10 combinations of the following metrics and optimizers are used: Master Image Slave Image Metrics: Normalized cross-correlation, mean squares and mutual information. ş Optimizers: Gradient descent, regular step gradient descent and a genetic algorithm. Metric nterpolato ransfo NR Regnesentral





### Summary of MIR approach

- The MIR approach uses a learning-based strategy: ►
  - . During a training phase the system learns the relationship between image characteristics and performance for different registration algorithms.
- The MIR approach is locally adaptive: The learning-based strategy is applied to image regions.
- This enables:
  - identification of regions suited for registration.
  - . selection of an appropriate algorithm for these region.
  - rejection of regions unsuited for registration.

#### NR Regnesentral

►

## **Quality indicators (QI)**

- Computed to give an indication of the quality of the ► result, without having to investigate the images.
  - The quality indicators are computed from:
  - the control points (tie points).
    - Control point gap indicates how well these are distributed over the image. Control point RMS gives mean distance between the

    - transform for each control point and the global transform. the mutual information between the images before and after registration.
    - A high MI value means a high dependency/similarity, and the MI between two images is expected to increase after coregistration.

NR ntral

|                   | C               | nespu             | Jiuenc          |                 | RIVIO                           |       |                  |                      |
|-------------------|-----------------|-------------------|-----------------|-----------------|---------------------------------|-------|------------------|----------------------|
| Image Pair:       | Very s<br>Mediu | imilar<br>n dist. | Very s<br>Large | imilar<br>dist. | Quite different<br>Medium dist. |       | Quite c<br>Large | lifferent<br>e dist. |
| Distortion:       | T8              | R1                | T50             | R8              | T8                              | R1    | T50              | R8                   |
| Control point gap | 0.025           | 0.022             | 0.023           | 0.067           | 0.134                           | 0.130 | 0.147            | 0.149                |
| Control point RMS | 0.115           | 0.189             | 16.897          | 4.055           | 0.400                           | 0.393 | 3.632            | 3.324                |
| Initial mean MI   | 0.369           | 0.542             | 0.302           | 0.331           | 0.266                           | 0.303 | 0.254            | 0.263                |
| Resulting mean MI | 2.625           | 1.985             | 0.306           | 0.327           | 0.402                           | 0.407 | 0.263            | 0.273                |
| MI improvement    | 2.256           | 1.442             | -0.003          | -0.004          | 0.137                           | 0.104 | 0.010            | 0.010                |
| RMS error         | 0.02            | 0.06              | 72.55           | 54.39           | 0.21                            | 0.21  | 73.77            | 54.45                |

# MRR - Multiresolution registration

#### Purpose

Used in MIR to be able to handle larger distortions.

- Principle for multireolution registration
  - Registration is first performed at a coarse scale where the images have fewer pixels. .

  - The mapping determined at the coarser level is then used to initialize registration at the next and finer scale. The process is repeated until it reaches the finest scale.



### Strategy for MRR in MIR

- Overall strategy
  - MRR used as a preprocessing step to obtain an initial coarse registration.
  - The adaptive MIR approach is used at the finest . resolution level to refine the result.
- MRR strategy
  - Applied to the entire image (no regions).
  - The same method at each resolution level.
  - The choice of method is predefined (not adaptive).

#### NR Regnesentrat



















### **Evaluation procedure**

- Two initially (manually) co-registered images, A and B.
- Apply a known transformation,  $U_0$ , to B, obtaining B'.
- Co-register A and B', resulting in an estimated transformation U<sub>R</sub> of B'.
- ► Ideally, U<sub>R</sub> should equal U<sub>0</sub><sup>-1</sup>.
- Measure the quality of the registration by the RMS residual differences between U<sub>0</sub><sup>-1</sup> and U<sub>R</sub>.
  - ...or equivalently their corresponding displacements.

#### NR Regnesentral

# Evaluation procedure



### Set of images

- ► Tests performed for several degrees of difficulty in terms of changes in scene appearance:
  - Images with no differences in content
  - Images with moderate differences
  - Images with large differences
- ► Tests performed for a set of known displacements:
  - Translations, rotations, scalings and combinations of these.

### NR







| Distortion       | No diff    | Moderate | lifferences    | Large diff     |        |      |
|------------------|------------|----------|----------------|----------------|--------|------|
|                  | QB<br>0.00 | E1, E2   | L1, L2<br>0.92 | NI, N2<br>0.51 | N2, N3 |      |
| Identity         |            | 0.54     |                |                | 0.47   | 0.25 |
| Т2               | 0.04       | 0.54     | 0.97           | 0.53           | 2.00   | 0.60 |
| Τ4               | 0.05       | 0.57     | 0.94           | 0.56           | 3.05   | 0.85 |
| Т8               | 0.04       | 0.53     | 1.03           | 0.54           | 10.24  | 0.53 |
| S .5%            | 0.05       | 0.53     | 0.99           | 0.54           | 1.00   | 0.45 |
| S 1%             | 0.04       | 0.46     | 1.01           | 0.58           | 2.76   | 0.76 |
| S 2%             | 0.12       | 0.50     | 0.90           | 0.67           | 5.19   | 0.85 |
| R .25°           | 0.03       | 0.51     | 1.01           | 0.52           | 1.65   | 0.47 |
| R .5°            | 0.05       | 0.51     | 0.99           | 0.58           | 2.41   | 0.53 |
| R 1º             | 0.09       | 0.48     | 0.93           | 0.63           | 7.55   | 1.38 |
| T 2/S .5%/R .25° | 0.04       | 0.49     | 0.98           | 0.56           | 2.06   | 0.75 |
| T 4/S 1%/R .5°   | 0.07       | 0.53     | 1.01           | 0.60           | 5.03   | 5.78 |
| RMS mean         | 0.06       | 0.52     | 0.97           | 0.57           | 4.55   | 1.81 |



### Summary of results

- ► Subpixel accuracy verified for perfect conditions.
- Subpixel accuracy also for images with moderate differences in contents.
  - Consistent results indicate better performance than for manual registration.
- ► Example with large differences in content:
  - Variable performance.
  - Mainly due to a large number of unsuitable areas?

#### NR

# Example for large distortions

NOAA-AVHRR image pair
 Results with and without MRR





Translation 40 pixels Scaling 8% Rotation 4°

NR Regnesentral







### Summary of results

- ► The adaptive co-registration without MRR is the most accurate.
- The multiresolution registration is necessary for ► registration of image pairs with large distortions.
- ► The multiresolution registration is less robust for large differences or large areas covered by clouds.

### NR Regnesentral

### Summary

- The MIR approach:
  - Based on a learning-based strategy: The system learns the relationship between image characteristics and performance for different registration algorithms.
  - Locally adaptive:

  - The approach is applied to subimages.
    This enables selection of the best registration algorithm for each region in the image, while regions unsuited for registration can be discarded.
- The MIR system:
  - Facilitates co-registration of time series of images by providing: an adaptive registration with subpixel accuracy
  - automatic run-time selection of the best method.
  - a multiresolution registration option for larger distortions.

### NR Norsk Regnesentral

### **Possible future work**

- Preparations for operational use on time series.
- ► Improvements based on user feedback.
- Adaptation and validation for newer libraries.
- ► Evaluations for multi-sensor.
  - Evaluation of current performance.
  - Evaluation of additional registration algorithms (e.g. • wavelet-based, feature-based etc.)
  - Evaluation of features for algorithm selection.

#### NR Norsk Regnesentral

#### 7